cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008970 Triangle T(n,k) = P(n,k)/2, n >= 2, 1 <= k < n, of one-half of number of permutations of 1..n such that the differences have k runs with the same signs.

Original entry on oeis.org

1, 1, 2, 1, 6, 5, 1, 14, 29, 16, 1, 30, 118, 150, 61, 1, 62, 418, 926, 841, 272, 1, 126, 1383, 4788, 7311, 5166, 1385, 1, 254, 4407, 22548, 51663, 59982, 34649, 7936, 1, 510, 13736, 100530, 325446, 553410, 517496, 252750, 50521, 1, 1022, 42236, 433162, 1910706, 4474002, 6031076, 4717222, 1995181, 353792
Offset: 2

Views

Author

Keywords

Examples

			Triangle starts
  1;
  1,  2;
  1,  6,   5;
  1, 14,  29,  16;
  1, 30, 118, 150, 61;
  ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 261, #13, P_{n,k}.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260, Table 7.2.1.

Crossrefs

A059427 gives triangle of P(n, k).
A008303 gives circular version of P(n, k).
T(2n,n) gives A360426.

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(n<2, 0, `if`(k=1, 1,
          k*T(n-1, k) + 2*T(n-1, k-1) + (n-k)*T(n-1, k-2)))
        end:
    seq(seq(T(n,k), k=1..n-1), n=2..12);  # Alois P. Heinz, Feb 08 2023
  • Mathematica
    p[n_ /; n >= 2, 1] = 2; p[n_ /; n >= 2, k_] /; 1 <= k <= n := p[n, k] = k*p[n-1, k] + 2*p[n-1, k-1] + (n-k)*p[n-1, k-2]; p[n_, k_] = 0; t[n_, k_] := p[n, k]/2; A008970 = Flatten[ Table[ t[n, k], {n, 2, 11}, {k, 1, n-1}]] (* Jean-François Alcover, Apr 03 2012, after given recurrence *)

Formula

Let P(n, k) = number of permutations of [1..n] with k "sequences". Note that A008970 gives P(n, k)/2. Then g.f.: Sum_{n, k} P(n, k) *u^k * t^n/n! = (1 + u)^(-1) * ((1 - u) * (1 - sin(v + t * cos(v))-1) where u = sin(v).
P(n, 1) = 2, P(n, k) = k*P(n-1, k) + 2*P(n-1, k-1) + (n-k)*P(n-1, k-2).

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Feb 01 2001