cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A006065 Maximal number of 4-tree rows in n-tree orchard problem.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 2, 2, 3, 5, 6, 7, 9, 10, 12, 15, 16, 18, 20, 23
Offset: 1

Views

Author

Keywords

Comments

Maximum number of rows with exactly 4 trees in each row if there are n trees in the orchard.
For further references and links see A003035.

References

  • M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, Chap. 22.
  • F. Levi, Geometrische Konfigurationen, Hirzel, Leipzig, 1929.
  • Xianzu Lin, A new result about orchard-planting problem, Preprint, 2005. [Shows a(20) >= 23.]
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • For further references and links see A003035.

Crossrefs

Cf. A172992 (the same problem, but with integer-valued tree coordinates).

Formula

a(n) >= A172992(n).

Extensions

a(13)-a(15) from Zhao Hui Du, Aug 24 2008
a(17) from Zhao Hui Du, Nov 11 2008
a(18) from Zhao Hui Du, Nov 25 2008
a(19) from Zhao Hui Du, Dec 17 2009
a(20) from Zhao Hui Du, Feb 01 2010

A003035 Maximal number of 3-tree rows in n-tree orchard problem.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 6, 7, 10, 12, 16, 19, 22, 26
Offset: 1

Views

Author

Keywords

Comments

It is known that a(15) is 31 or 32, a(16)=37 and a(17) is 40, 41 or 42. - N. J. A. Sloane, Feb 11 2013

References

  • P. Brass et al., Research Problems in Discrete Geometry, Springer, 2005.
  • S. A. Burr, in The Mathematical Gardner, Ed. D. A. Klarner, p. 94, Wadsworth, 1981.
  • S. A. Burr, B. Grünbaum and N. J. A. Sloane, The Orchard Problem, Geometriae Dedicata, 2 (1974), 397-424.
  • Jean-Paul Delahaye, Des points qui s'alignent... ou pas, "Logique et calcul" column, "Pour la science", June 2021.
  • H. E. Dudeney, Amusements in Mathematics, Nelson, London, 1917, page 56.
  • Paul Erdos and George Purdy. Extremal problems in geometry, Chapter 17, pages 809-874 in R. L. Graham et al., eds., Handbook of Combinatorics, 2 vols., MIT Press, 1995. See Section 3.7.
  • M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, Chap. 22.
  • B. Grünbaum, Arrangements and Spreads. American Mathematical Society, Providence, RI, 1972, p. 22.
  • John Jackson, Rational Amusements for Winter Evenings, London, 1821.
  • F. Levi, Geometrische Konfigurationen, Hirzel, Leipzig, 1929.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006065 (4 trees/row), A008997 (5 trees per row), A058212.

Extensions

13 and 14 trees result from Zhao Hui Du, Nov 20 2008
Replaced my old picture with link to my write-up. - Ed Pegg Jr, Feb 02 2018
Showing 1-2 of 2 results.