cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A294312 Expansion of e.g.f. sec(x*exp(x)).

Original entry on oeis.org

1, 0, 1, 6, 29, 180, 1501, 14434, 154265, 1856232, 24953401, 368767102, 5936244533, 103519338780, 1944554725205, 39134556793050, 840024295910833, 19157944025344464, 462629389438242673, 11792248121970820598, 316398168231432879565, 8913743651504295251844
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 27 2017

Keywords

Examples

			sec(x*exp(x)) = 1 + x^2/2! + 6*x^3/3! + 29*x^4/4! + 180*x^5/5! + 1501*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(sec(x*exp(x)),x=0,22): seq(n!*coeff(a,x,n),n=0..21); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    nmax = 21; CoefficientList[Series[Sec[x Exp[x]], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 21; CoefficientList[Series[1/Cos[x Exp[x]], {x, 0, nmax}], x] Range[0, nmax]!

A306336 Expansion of e.g.f. sec(log(1 + x)) + tan(log(1 + x)).

Original entry on oeis.org

1, 1, 0, 1, -2, 10, -50, 320, -2340, 19640, -184900, 1932500, -22187200, 277576000, -3757884000, 54732418000, -853278998000, 14176686784000, -250046057846000, 4665989766386000, -91838330641200000, 1901405069222360000, -41307212202493120000, 939523370329035440000, -22327292561388519640000
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 08 2019

Keywords

Crossrefs

Programs

  • Maple
    a:=series(sec(log(1 + x)) + tan(log(1 + x)),x=0,25): seq(n!*coeff(a,x,n),n=0..24); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 24; CoefficientList[Series[Sec[Log[1 + x]] + Tan[Log[1 + x]], {x, 0, nmax}], x] Range[0, nmax]!
    e[n_] := e[n] = (2 I)^n If[EvenQ[n], EulerE[n, 1/2], EulerE[n, 0] I]; a[n_] := a[n] = Sum[StirlingS1[n, k] e[k], {k, 0, n}]; Table[a[n], {n, 0, 24}]
  • Python
    from itertools import accumulate
    from sympy.functions.combinatorial.numbers import stirling
    def A306336(n): # generator of terms
        if n == 0: return 1
        blist, c = (0,1), 0
        for k in range(1,n+1):
            c += stirling(n,k,kind=1,signed=True)*blist[-1]
            blist = tuple(accumulate(reversed(blist),initial=0))
        return c # Chai Wah Wu, Apr 18 2023

Formula

a(n) = Sum_{k=0..n} Stirling1(n,k)*A000111(k).
a(n) ~ -2*(-1)^n * n! * exp(3*Pi*n/2) / (exp(3*Pi/2) - 1)^(n+1). - Vaclav Kotesovec, Feb 09 2019
Showing 1-2 of 2 results.