cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A298213 Triangle read by rows, expansion of exp(x*exp(z)*tan(z)).

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 5, 6, 1, 0, 12, 32, 12, 1, 0, 41, 160, 110, 20, 1, 0, 142, 856, 900, 280, 30, 1, 0, 685, 4816, 7231, 3360, 595, 42, 1, 0, 3192, 29952, 58632, 37856, 9800, 1120, 56, 1, 0, 19921, 199680, 493100, 416640, 147126, 24192, 1932, 72, 1
Offset: 0

Views

Author

Peter Luschny, Jan 15 2018

Keywords

Examples

			Triangle starts:
0: 1;
1: 0,    1;
2: 0,    2,     1;
3: 0,    5,     6,     1;
4: 0,   12,    32,    12,     1;
5: 0,   41,   160,   110,    20,    1;
6: 0,  142,   856,   900,   280,   30,    1;
7: 0,  685,  4816,  7231,  3360,  595,   42,  1;
8: 0, 3192, 29952, 58632, 37856, 9800, 1120, 56, 1;
		

Crossrefs

T(n,1) = A009739(n), T(n,n) = A002378(n-1).
Row sums are A009248.
Cf. A075497.

Programs

  • Maple
    gf := exp(x*exp(z)*tan(z)):
    X := n -> series(gf, z, n+2):
    Z := n -> n!*expand(simplify(coeff(X(n), z, n))):
    A298213_row := n -> op(PolynomialTools:-CoefficientList(Z(n), x)):
    seq(A298213_row(n), n=0..8);

A305710 Expansion of e.g.f. exp(sec(x)*exp(x) - 1).

Original entry on oeis.org

1, 1, 3, 11, 53, 297, 1959, 14499, 120409, 1097025, 10931771, 117685163, 1363889133, 16887554569, 222672557631, 3110742121059, 45912214062961, 713290136581697, 11636755988405555, 198800967493444875, 3549276499518132325, 66076184834921382313, 1280502976522048458647
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 08 2018

Keywords

Examples

			exp(sec(x)*exp(x) - 1) = 1 + x + 3*x^2/2! + 11*x^3/3! + 53*x^4/4! + 297*x^5/5! + 1959*x^6/6! + 14499*x^7/7! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(exp(sec(x)*exp(x)-1),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[Exp[Sec[x] Exp[x] - 1], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[(2 I)^k EulerE[k, 1/2 - I/2] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 22}]
Showing 1-2 of 2 results.