cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A009641 a(n) = Product_{i=0..6} floor((n+i)/7).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 8, 16, 32, 64, 128, 192, 288, 432, 648, 972, 1458, 2187, 2916, 3888, 5184, 6912, 9216, 12288, 16384, 20480, 25600, 32000, 40000, 50000, 62500, 78125, 93750, 112500, 135000, 162000, 194400, 233280, 279936, 326592, 381024
Offset: 0

Views

Author

Keywords

Comments

For n >= 7, a(n) is the maximal product of seven positive integers with sum n. - Wesley Ivan Hurt, Jun 29 2022

Crossrefs

Maximal product of k positive integers with sum n, for k = 2..10: A002620 (k=2), A006501 (k=3), A008233 (k=4), A008382 (k=5), A008881 (k=6), this sequence (k=7), A009694 (k=8), A009714 (k=9), A354600 (k=10).

Programs

Formula

a(n) = 2*a(n-1) - a(n-2) + 6*a(n-7) - 12*a(n-8) + 6*a(n-9) - 15*a(n-14) + 30*a(n-15) - 15*a(n-16) + 20*a(n-21) - 40*a(n-22) + 20*a(n-23) - 15*a(n-28) + 30*a(n-29) - 15*a(n-30) + 6*a(n-35) - 12*a(n-36) + 6*a(n-37) - a(n-42) + 2*a(n-43) - a(n-44). - Wesley Ivan Hurt, Jun 29 2022
a(7*n) = n^7 (A001015). - Bernard Schott, Nov 04 2022
Sum_{n>=7} 1/a(n) = 1 + zeta(7). - Amiram Eldar, Jan 10 2023

Extensions

a(40)-a(44) from Georg Fischer, Nov 07 2019