cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A009714 a(n) = Product_{i=0..8} floor((n+i)/9).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 768, 1152, 1728, 2592, 3888, 5832, 8748, 13122, 19683, 26244, 34992, 46656, 62208, 82944, 110592, 147456, 196608, 262144, 327680, 409600, 512000, 640000, 800000, 1000000, 1250000, 1562500
Offset: 0

Views

Author

Keywords

Comments

For n >= 9, a(n) is the maximal product of 9 positive integers with sum n. - Wesley Ivan Hurt, Jul 08 2022

Crossrefs

Maximal product of k positive integers with sum n, for k = 2..10: A002620 (k=2), A006501 (k=3), A008233 (k=4), A008382 (k=5), A008881 (k=6), A009641 (k=7), A009694 (k=8), this sequence (k=9), A354600 (k=10).
Cf. A001017 (n^9, a subsequence), A013667.

Programs

  • Mathematica
    A009714[n_] := Product[Floor[(n + i)/9], {i, 0, 8}];
    Array[A009714, 50, 0] (* Paolo Xausa, Aug 21 2024 *)
  • PARI
    a(n) = prod(k=0, 8, floor((n+k)/9)); \\ Georg Fischer, Nov 07 2019

Formula

a(9*n) = n^9. - Bernard Schott, Nov 20 2022
a(9*n+j) = n^(9-j)*(n+1)^j for 0 <= j <= 8. - Robert Israel, Nov 21 2022
Sum_{n>=9} 1/a(n) = 1 + zeta(9). - Amiram Eldar, Jan 10 2023