cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A009837 Expansion of tanh(x)tan(x)/2 in powers of x^(4*n+2).

Original entry on oeis.org

1, 56, 46336, 182844416, 2205641015296, 63603482126974976, 3748468097940723859456, 404963012992964559934324736, 74035562436962891333631597346816, 21543523644222111882868080329093021696, 9505937948357641883573662624456235995365376
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A024342.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m);
    b:= Coefficients(R!(Laplace( Tan(x)*Tanh(x)/2 )));
    [b[4*n-3]: n in [1..Floor((m-2)/4)]]; // G. C. Greubel, Jan 31 2022
    
  • Mathematica
    nn=20; Table[(CoefficientList[Series[(Tan[x]*Tanh[x])/2,{x,0,4*nn+2}],x] * Range[0,4*nn+2]!)[[n]],{n,3,4*nn+1,4}] (* Vaclav Kotesovec, Jan 24 2015 *)
  • Sage
    [factorial(4*n+2)*( tan(x)*tanh(x)/2 ).series(x, 4*n+3).list()[4*n+2] for n in (0..20)] # G. C. Greubel, Jan 31 2022

Formula

a(n) = [ x^(4*n+2) ] ( tanh(x)*tan(x)/2 ).
a(n) = A024342(n)/2.
a(n) ~ (4*n+2)! * 2^(4*n+4) * tanh(Pi/2) / Pi^(4*n+3). - Vaclav Kotesovec, Jan 24 2015

Extensions

Extended and signs tested Mar 1997.