A009997 Number of comparative probability orderings on all subsets of n elements that can arise by assigning a probability distribution to the individual elements.
1, 1, 1, 2, 14, 516, 124187, 214580603
Offset: 0
Links
- Antoine Deza, George Manoussakis, and Shmuel Onn, Primitive Zonotopes, Discrete & Computational Geometry, 2017, p. 1-13. (See p. 5.)
- T. Fine and J. Gill, The enumeration of comparative probability relations, Ann. Prob. 4 (1976) 667-673.
- Shane Kepley, Konstantin Mischaikow, and Lun Zhang, Computing linear extensions for Boolean lattices with algebraic constraints, arXiv:2006.02622 [math.CO], 2020.
- D. Maclagan, Boolean Term Orders and the Root System B_n, arXiv:math/9809134 [math.CO], 1998-1999. (Data in table on p.13)
- D. Maclagan, Boolean Term Orders and the Root System B_n, Order 15 (1999), 279-295. (Data in first table on p. 293.)
Programs
-
PARI
apply( {A009997(n)=if(n>4, [516, 124187, 214580603][n-4], (n-=!!n)^n\/2)}, [0..7]) \\ M. F. Hasler, Mar 17 2023
Formula
a(n) <= A005806(n) with equality iff n <= 4. - M. F. Hasler, Mar 17 2023
Extensions
a(6) and a(7) from Diane Maclagan and Michael Kleber
Edited by N. J. A. Sloane, Nov 26 2008
a(0) = 1 inserted by M. F. Hasler, Mar 17 2023
Comments