A255831 Square array A(m,n) = Resultant(X^m+n,(X+1)^m+n), read by (falling) antidiagonals, m >= 1, n >= 0.
1, 1, 1, 1, 5, 1, 1, 9, 28, 1, 1, 13, 109, 153, 1, 1, 17, 244, 1617, 3751, 1, 1, 21, 433, 5929, 52501, 175760, 1, 1, 25, 676, 14625, 258751, 3261249, 6835648, 1, 1, 29, 973, 29241, 810001, 19763200, 148756357, 1051779953, 1, 1, 33, 1324, 51313, 1968751, 73559825, 1086478912, 23937893793, 364668913756, 1
Offset: 0
Examples
The square array starts at its upper left as follows: [ 1 1 1 1 1 1 1 ... ] [ 1 5 9 13 17 21 25 ... ] [ 1 28 109 244 433 676 973 ... ] [ 1 153 1617 5929 14625 29241 51313 ... ] [ 1 3751 52501 258751 810001 1968751 4072501 ... ] [ 1 175760 3261249 19763200 73559825 207499536 488999665 ... ] [ : : : : : : : ·. ] [ : : : : : : : ·.]
Programs
-
PARI
A255831(m,n)=polresultant('x^m+n,('x+1)^m+n)
-
Python
from sympy import resultant from sympy.abc import x def A255831_T(m,n): return resultant(x**m+n,(x+1)**m+n) # Chai Wah Wu, May 08 2024
Extensions
Edited by Max Alekseyev, Aug 07 2015
Comments