cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010076 a(n) = sum of base-9 digits of a(n-1) + sum of base-9 digits of a(n-2).

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 13, 13, 10, 7, 9, 8, 9, 9, 2, 3, 5, 8, 13, 13, 10, 7, 9, 8, 9, 9, 2, 3, 5, 8, 13, 13, 10, 7, 9, 8, 9, 9, 2, 3, 5, 8, 13, 13, 10, 7, 9, 8, 9, 9, 2, 3, 5, 8, 13, 13, 10, 7, 9, 8, 9, 9, 2, 3, 5, 8, 13, 13, 10, 7, 9, 8, 9, 9
Offset: 0

Views

Author

Keywords

Comments

The digital sum analog (in base 9) of the Fibonacci recurrence. - Hieronymus Fischer, Jun 27 2007
a(n) and Fib(n)=A000045(n) are congruent modulo 8 which implies that (a(n) mod 8) is equal to (Fib(n) mod 8) = A079344(n). Thus (a(n) mod 8) is periodic with the Pisano period A001175(8)=12. - Hieronymus Fischer, Jun 27 2007
For general bases p>2, we have the inequality 2<=a(n)<=2p-3 (for n>2). Actually, a(n)<=13=A131319(9) for the base p=9. - Hieronymus Fischer, Jun 27 2007

Crossrefs

Programs

  • Mathematica
    PadRight[{0, 1, 1}, 100, {8, 9, 9, 2, 3, 5, 8, 13, 13, 10, 7, 9}] (* Paolo Xausa, Aug 25 2024 *)

Formula

Periodic from n=3 with period 12. - Franklin T. Adams-Watters, Mar 13 2006
From Hieronymus Fischer, Jun 27 2007: (Start)
a(n) = a(n-1)+a(n-2)-8*(floor(a(n-1)/9)+floor(a(n-2)/9)).
a(n) = floor(a(n-1)/9)+floor(a(n-2)/9)+(a(n-1)mod 9)+(a(n-2)mod 9).
a(n) = (a(n-1)+a(n-2)+8*(A010878(a(n-1))+A010878(a(n-2))))/9.
a(n) = Fib(n)-8*sum{1A000045(n). (End)

Extensions

Incorrect comment removed by Michel Marcus, Apr 29 2018