A010082 Weight distribution of extended Hamming code of length 64.
1, 0, 10416, 1166592, 69194232, 2366570752, 51316746768, 747741998592, 7633243745820, 56276359749120, 306558278858160, 1255428754917120, 3916392495228360, 9399341113166592, 17480786291963792, 25316999607653376, 28634752793916486, 25316999607653376
Offset: 0
Examples
69194232*x^8*y^56 + 25316999607653376*x^30*y^34 + 747741998592*x^14*y^50 + 9399341113166592*x^26*y^38 + 1255428754917120*x^22*y^42 + 306558278858160*x^20*y^44 + 7633243745820*x^16*y^48 + 56276359749120*x^46*y^18 + 306558278858160*x^44*y^20 + y^64 + 28634752793916486*x^32*y^32 + 17480786291963792*x^36*y^28 + 1255428754917120*x^42*y^22 + 17480786291963792*x^28*y^36 + 56276359749120*x^18*y^46 + 10416*x^60*y^4 + 1166592*x^58*y^6 + 1166592*x^6*y^58 + 10416*x^4*y^60 + 51316746768*x^12*y^52 + 9399341113166592*x^38*y^26 + 25316999607653376*x^34*y^30 + 2366570752*x^10*y^54 + 3916392495228360*x^24*y^40 + 51316746768*x^52*y^12 + 747741998592*x^50*y^14 + 7633243745820*x^48*y^16 + 3916392495228360*x^40*y^24 + x^64 + 2366570752*x^54*y^10 + 69194232*x^56*y^8 The weight distribution is: i A_i 0 1 4 10416 6 1166592 8 69194232 10 2366570752 12 51316746768 14 747741998592 16 7633243745820 18 56276359749120 20 306558278858160 22 1255428754917120 24 3916392495228360 26 9399341113166592 28 17480786291963792 30 25316999607653376 32 28634752793916486 34 25316999607653376 36 17480786291963792 38 9399341113166592 40 3916392495228360 42 1255428754917120 44 306558278858160 46 56276359749120 48 7633243745820 50 747741998592 52 51316746768 54 2366570752 56 69194232 58 1166592 60 10416 64 1
References
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 129.
Links
- Georg Fischer, Table of n, a(n) for n = 0..32
- M. Terada, J. Asatani and T. Koumoto, Weight Distribution
Programs
-
Mathematica
m:=63; rt=RecurrenceTable[{n*a[n]==Binomial[m, n-1]-a[n-1]-(m-n+2)*a[n-2], a[0]==1, a[1]==0}, a, {n, 0, m}]; Join[{1}, Table[rt[[i]]+rt[[i+1]], {i, 2, m, 2}], {1}] (* Georg Fischer, Jul 16 2020 *)
Comments