A010568 Number of 2n-step self-avoiding closed paths on the 4-dimensional cubic lattice.
8, 48, 912, 22944, 652320, 20266368, 669756192, 23146172544, 827460518688, 30378237727200, 1139447186954208, 43501453488658368, 1685588678025512832
Offset: 1
Links
- Nathan Clisby, Richard Liang, and Gordon Slade, Self-avoiding walk enumeration via the lace expansion, J. Phys. A: Math. Theor. 40 (2007), 10973-11017. Table A6 "Enumeration results for d = 4", column p_n, row 2*n gives a(n)/(4*n) for n>1.
- Nathan Clisby, Richard Liang, and Gordon Slade, Self-avoiding walk enumeration via the lace expansion. [Tables in machine-readable format on separate pages.]
- M. E. Fisher and D. S. Gaunt, Ising model and self-avoiding walks on hypercubical lattices and high density expansions, Phys. Rev. 133 (1964) A224-A239.
Programs
-
Python
def A010568(n): # For illustration - becomes slow for n > 5 if not hasattr(A:=A010568, 'r'): A.terms = [8]; O = 0,; I = O*4, (1,*O*3) A.paths = (*I, (2,*O*3)), (*I, (1,1,0,0)) while n > len(A.terms): for L in (0, 1): new=[]; cycles = 0; O=(0,)*4; I = 0,1,2,3 for path in A.paths: end = path[-1]; weight = 48 if path[2][1] else 8 for i in I: for s in (1, -1): t = tuple(end[j]if j!=i else end[j]+s for j in I) if t not in path: new.append(path+(t,)) elif L and t==O: cycles += weight A.paths = new A.terms.append(cycles) return A.terms[n-1] # M. F. Hasler, Jun 17 2025
Formula
For all n, a(n) is divisible by 8*n. - M. F. Hasler, Jun 18 2025
Extensions
a(6)-a(8) from Sean A. Irvine, May 31 2018
a(9)-a(10) from Sean A. Irvine, Aug 09 2020
"Self-avoiding" inserted in definition by M. F. Hasler, Jun 18 2025
a(11)-a(13) from Clisby et al.'s data added by Andrei Zabolotskii, Jun 25 2025
Comments