A010570 Number of 2n-step self-avoiding closed paths on the 6-dimensional cubic lattice.
12, 120, 4200, 216720, 13594320, 959431200, 73286046960, 5928739001280, 501123204523440, 43851618007523760, 3946829550070653840, 363607619806646296800
Offset: 1
Links
- Nathan Clisby, Richard Liang, and Gordon Slade, Self-avoiding walk enumeration via the lace expansion, J. Phys. A: Math. Theor. 40 (2007), 10973-11017. Table A8 "Enumeration results for d = 6", column p_n, row 2*n gives a(n)/(4*n) for n>1.
- Nathan Clisby, Richard Liang, and Gordon Slade, Self-avoiding walk enumeration via the lace expansion. [Tables in machine-readable format on separate pages.]
- M. E. Fisher and D. S. Gaunt, Ising model and self-avoiding walks on hypercubical lattices and high density expansions, Phys. Rev. 133 (1964) A224-A239.
Programs
-
Python
def A010570(n): # For illustration - becomes slow for n > 4 if not hasattr(A:=A010570, 'r'): A.terms = [12]; A.weights = 12, 120; I = (0,)*6, (1,)+(0,)*5 A.paths = (*I,(2,)+(0,)*5), (*I,(1,1)+(0,)*4); A.r = tuple(range(6)) while n > len(A.terms): for L in (0, 1): np = []; nw=[]; cycles = 0 for path,weight in zip(A.paths,A.weights): end = path[-1] for i in A.r: for s in (1, -1): t = tuple(end[j]if j!=i else end[j]+s for j in A.r) if t not in path: np+=[path+(t,)]; nw+=[weight] elif L and t==path[0]: cycles += weight A.paths, A.weights = np, nw A.terms.append(cycles) return A.terms[n-1] # M. F. Hasler, Jun 17 2025
Extensions
a(6)-a(7) from Sean A. Irvine, Jun 01 2018
a(8) from Sean A. Irvine, Aug 17 2020
"Self-avoiding" added in definition by M. F. Hasler, Jun 18 2025
a(9)-a(12) from Clisby et al.'s data added by Andrei Zabolotskii, Jun 25 2025
Comments