cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010575 Number of n-step self-avoiding walks on 4-d cubic lattice.

Original entry on oeis.org

1, 8, 56, 392, 2696, 18584, 127160, 871256, 5946200, 40613816, 276750536, 1886784200, 12843449288, 87456597656, 594876193016, 4047352264616, 27514497698984, 187083712725224, 1271271096363128, 8639846411760440, 58689235680164600, 398715967140863864
Offset: 0

Views

Author

Keywords

Comments

The computation for n=16 took 11.5 days CPU time on a 500MHz Digital Alphastation. The asymptotic behavior lim n->infinity a(n)/mu^n=const is discussed in the MathWorld link. The Pfoertner link provides an illustration of the asymptotic behavior indicating that the connective constant mu is in the range [6.79,6.80]. - Hugo Pfoertner, Dec 14 2002
Computation of the new term a(17) took 16.5 days CPU time on a 1.5GHz Intel Itanium 2 processor. - Hugo Pfoertner, Oct 19 2004

Crossrefs

Programs

  • Fortran
    c A "brute force" Fortran program to count the 4D walks is available at the Pfoertner link.

Formula

a(n) = 8*A366925(n) for n >= 1. - Hugo Pfoertner, Nov 03 2023

Extensions

a(12)-a(16) from Hugo Pfoertner, Dec 14 2002
a(17) from Hugo Pfoertner, Oct 19 2004
a(18) onwards from R. J. Mathar using data from Clisby et al, Aug 31 2007