A011724 A binary m-sequence: expansion of reciprocal of x^11 + x^2 + 1 (mod 2, shifted by 10 initial 0's).
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0
Offset: 0
References
- S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967.
- H. D. Lueke, Korrelationssignale, Springer 1992, pp. 43-48.
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1978, p. 408.
Links
- Ray Chandler, Table of n, a(n) for n = 0..3000
- Index entries for linear recurrences with constant coefficients, order 2047.
Crossrefs
Programs
-
Maple
for i from 0 to 9 do a[i]:= 0 od: a[10]:= 1: for i from 11 to 200 do a[i]:= a[i-2]+a[i-11] mod 2 od: seq(a[i],i=0..200); # Robert Israel, Feb 18 2018
-
Mathematica
Join[Table[0, 10], Mod[CoefficientList[1/(x^11+x^2+1) + O[x]^72, x], 2]] (* Jean-François Alcover, Feb 23 2018 *)
-
PARI
A011724_vec=Vec(lift(Mod(1,2)/(1+x^2+x^11)+O(x^2037)),-2047); A011724(n)=A011724_vec[n%2047+1] \\ Faster than polcoeff(...). - M. F. Hasler, Feb 17 2018
Formula
G.f. = x^10/(1+x^2+x^11) over GF(2). - M. F. Hasler, Feb 17 2018
a(n) == a(n-2) + a(n-11) (mod 2) for n >= 11. - Robert Israel, Feb 18 2018
Comments