cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011724 A binary m-sequence: expansion of reciprocal of x^11 + x^2 + 1 (mod 2, shifted by 10 initial 0's).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Sequence is 2047-periodic. - Ray Chandler, Dec 10 2016
Expansion of x^10/(x^11+x^2+1) over GF(2). Indeed, 2047 is the smallest k > 0 such that (1-x^k) == 0 (mod 1+x^2+x^11, 2), which means that 1/(1+x^2+x^11) is 2047-periodic over GF(2). It appears somewhat nontrivial that the coefficients of x^2037 through x^2046 of 1/(1+x^2+x^11) are zero (mod 2), which "justifies" the shift by 10 leading zeros. - M. F. Hasler, Feb 16 2018

References

  • S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967.
  • H. D. Lueke, Korrelationssignale, Springer 1992, pp. 43-48.
  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1978, p. 408.

Crossrefs

Cf. A011655, A011656, ..., A011745 for other binary m-sequences, and A011746..A011751 for similar expansions over GF(2).

Programs

  • Maple
    for i from 0 to 9 do a[i]:= 0 od: a[10]:= 1:
    for i from 11 to 200 do a[i]:= a[i-2]+a[i-11] mod 2 od:
    seq(a[i],i=0..200); # Robert Israel, Feb 18 2018
  • Mathematica
    Join[Table[0, 10], Mod[CoefficientList[1/(x^11+x^2+1) + O[x]^72, x], 2]] (* Jean-François Alcover, Feb 23 2018 *)
  • PARI
    A011724_vec=Vec(lift(Mod(1,2)/(1+x^2+x^11)+O(x^2037)),-2047);
    A011724(n)=A011724_vec[n%2047+1] \\ Faster than polcoeff(...). - M. F. Hasler, Feb 17 2018

Formula

G.f. = x^10/(1+x^2+x^11) over GF(2). - M. F. Hasler, Feb 17 2018
a(n) == a(n-2) + a(n-11) (mod 2) for n >= 11. - Robert Israel, Feb 18 2018