A011727 A binary m-sequence: expansion of reciprocal of x^14 + x^12 + x^11 + x + 1 (mod 2, shifted by 13 initial 0's).
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0
Offset: 0
Keywords
References
- S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967.
- H. D. Lueke, Korrelationssignale, Springer 1992, pp. 43-48.
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1978, p. 408.
Links
- Ray Chandler, Table of n, a(n) for n = 0..17000
- Index entries for linear recurrences with constant coefficients, order 16383.
Crossrefs
Programs
-
Mathematica
Mod[#, 2] & /@ CoefficientList[Series[x^13/(x^14 + x^12 + x^11 + x + 1), {x, 0, 105}], x] (* Michael De Vlieger, Feb 21 2018 *)
-
PARI
A011727_vec(N)=Vec(lift(Mod(1,2)/(x^14+x^12+x^11+x+1)+O(x^(N-13))),-N) \\ M. F. Hasler, Feb 17 2018
Formula
G.f. = x^13/(x^14 + x^12 + x^11 + x + 1) over GF(2). - M. F. Hasler, Feb 17 2018
Comments