A011734 A binary m-sequence: expansion of reciprocal of x^21 + x^2 + 1 (mod 2, shifted by 20 initial 0's).
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0
Offset: 0
Keywords
References
- S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967.
- H. D. Lueke, Korrelationssignale, Springer 1992, pp. 43-48.
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1978, p. 408.
Crossrefs
Programs
-
Mathematica
Join[PadRight[{},20,0],(Mod[#,2]&/@CoefficientList[Series[1/(x^21+x^2+1),{x,0,60}],x])] (* Harvey P. Dale, Jun 01 2020 *)
-
PARI
A=matrix(N=21,N,i,j, if(i>1, i==j+1, setsearch([2,N], j)>0))*Mod(1,2); a(n)=lift((A^(n-#A+1))[1,1]) \\ M. F. Hasler, Feb 17 2018
Formula
G.f. = x^20/(x^21 + x^2 + 1), over GF(2). - M. F. Hasler, Feb 17 2018
Extensions
Edited by M. F. Hasler, Feb 17 2018
Comments