A011737 A binary m-sequence: expansion of reciprocal of x^24 + x^4 + x^3 + x + 1 (mod 2, shifted by 23 initial 0's).
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1
Offset: 0
Keywords
References
- S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967.
- H. D. Lueke, Korrelationssignale, Springer 1992, pp. 43-48.
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1978, p. 408.
Links
- Index entries for linear recurrences with constant coefficients, order 16777215.
Crossrefs
Programs
-
PARI
A=matrix(N=24,N,i,j, if(i>1, i==j+1, setsearch([1,3,4,N],j)>0))*Mod(1, 2); a(n)=lift((A^(n-#A+1))[1,1]) \\ M. F. Hasler, Feb 17 2018
Formula
G.f. = x^23/(x^24 + x^4 + x^3 + x + 1), over GF(2). - M. F. Hasler, Feb 17 2018
Extensions
Edited by M. F. Hasler, Feb 17 2018
Comments