A011738 A binary m-sequence: expansion of reciprocal of x^25 + x^3 + 1 (mod 2, shifted by 24 initial 0's).
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0
Offset: 0
Keywords
References
- S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967.
- H. D. Lueke, Korrelationssignale, Springer 1992, pp. 43-48.
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1978, p. 408.
Links
Crossrefs
Programs
-
Maple
N:= 200: # to get a(0)..a(N) A:= Array(0..N): A[24]:= 1: for n from 25 to N do A[n]:= A[n-3] + A[n-25] mod 2 od: convert(A,list); # Robert Israel, Mar 25 2018
-
PARI
A=matrix(N=25,N,i,j, if(i>1, i==j+1, setsearch([3,N],j)>0))*Mod(1, 2); a(n)=lift((A^(n-#A+1))[1,1]) \\ M. F. Hasler, Feb 17 2018
Formula
G.f. = x^24/(x^25+x^3+1), over GF(2). - M. F. Hasler, Feb 17 2018
Comments