A011751 Expansion of (1 + x^4)/(1 + x + x^3 + x^4 + x^5) mod 2.
1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0
Offset: 0
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..1000
- Michael Gilleland, Some Self-Similar Integer Sequences
- R. Gold, Characteristic linear sequences and their coset functions, J. SIAM Applied. Math., 14 (1966), 980-985.
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1), i.e., 31-periodic.
Programs
-
Maple
series((1+x^4)/(1+x+x^3+x^4+x^5),x,100) mod 2; [seq(coeff(series((1+x^4)/(1+x+x^3+x^4+x^5),x,100) mod 2,x,n),n=0..80)]; # Muniru A Asiru, Feb 18 2018 A011751 := n -> coeftayl((1+x^4)/(1+x+x^3+x^4+x^5),x=0,n) mod 2 # M. F. Hasler, Feb 18 2018
-
Mathematica
Mod[ CoefficientList[ Series[(1 + x^4)/(1 + x + x^3 + x^4 + x^5), {x, 0, 105}], x], 2] (* Robert G. Wilson v, Feb 19 2018 *)
-
PARI
a(n)=bittest(1826728215,n%31) \\ M. F. Hasler, Feb 17 2018
Formula
a(n+31) = a(n) for all n. - M. F. Hasler, Feb 17 2018