cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A011819 M-sequences m_0,m_1,m_2,m_3 with m_1 < n.

Original entry on oeis.org

2, 5, 16, 52, 152, 392, 904, 1899, 3694, 6743, 11672, 19318, 30772, 47426, 71024, 103717, 148122, 207385, 285248, 386120, 515152, 678316, 882488, 1135535, 1446406, 1825227, 2283400, 2833706, 3490412, 4269382, 5188192, 6266249
Offset: 1

Views

Author

Svante Linusson (linusson(AT)math.kth.se)

Keywords

References

  • S. Linusson, The number of M-sequences and f-vectors, Combinatorica, 19 (1999), 255-266.

Crossrefs

Programs

  • Magma
    [n*(2*n^5+15*n^4+50*n^3+165*n^2+308*n+540)/360+2: n in [0..40]]; // Vincenzo Librandi, Feb 16 2014
  • Mathematica
    CoefficientList[Series[(x^6 - 7 x^5 + 19 x^4 -25 x^3 + 23 x^2 - 9 x + 2)/(1 - x)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 16 2014 *)
  • PARI
    a(n)=n*(2*n^5+15*n^4+50*n^3+165*n^2+308*n+540)/360+2 \\ Charles R Greathouse IV, Dec 08 2011
    
  • PARI
    Vec(-x*(x^6-7*x^5+19*x^4-25*x^3+23*x^2-9*x+2)/(x-1)^7 + O(x^100)) \\ Colin Barker, Feb 15 2014
    

Formula

a(n)= ( 2*n^6 +15*n^5 +50*n^4 +165*n^3 +308*n^2 +540*n +720 )/360. [Frank Ellermann]
G.f.: -x*(x^6-7*x^5+19*x^4-25*x^3+23*x^2-9*x+2) / (x-1)^7. - Colin Barker, Feb 15 2014

A011828 Number of f-vectors for simplicial complexes of dimension at most 3 on at most n-1 vertices.

Original entry on oeis.org

2, 3, 5, 10, 26, 95, 457, 2246, 9705, 35926, 115688, 331201, 859587, 2054860, 4582126, 9627831, 19217260, 36679253, 67308375, 119286676, 204940824, 342425909, 557944719, 888630900, 1386246251, 2121866592, 3191757298
Offset: 1

Views

Author

Svante Linusson (linusson(AT)math.kth.se)

Keywords

References

  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.3 (p. 743).
  • S. Linusson, The number of M-sequences and f-vectors, Combinatorica, 19 (1999), 255-266.

Crossrefs

Formula

a(n+1) = (12*n^10 -112*n^9 +351*n^8 -132*n^7 +378*n^6 -2856*n^5 +4839*n^4 +56812*n^3 -5580*n^2 +309168*n +725760)/362880 fits terms up to 3191757298. [Frank Ellermann]
Empirical G.f.: -x*(x^10 -11*x^9 +69*x^8 -130*x^7 +380*x^6 -400*x^5 +356*x^4 -210*x^3 +82*x^2 -19*x +2)/(x -1)^11. [Colin Barker, Sep 18 2012]
Showing 1-2 of 2 results.