cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011942 a(n) = floor( n*(n-1)*(n-2)*(n-3)/32 ).

Original entry on oeis.org

0, 0, 0, 0, 0, 3, 11, 26, 52, 94, 157, 247, 371, 536, 750, 1023, 1365, 1785, 2295, 2907, 3633, 4488, 5486, 6641, 7969, 9487, 11212, 13162, 15356, 17813, 20553, 23598, 26970, 30690, 34782, 39270, 44178, 49533, 55361, 61688, 68542, 75952, 83947, 92557, 101813, 111746, 122388, 133773, 145935, 158907, 172725
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A011915.

Programs

  • Magma
    [Floor(3*Binomial(n,4)/4): n in [0..60]]; // G. C. Greubel, Oct 26 2024
    
  • Mathematica
    Floor[3*Binomial[Range[0,60], 4]/4] (* G. C. Greubel, Oct 26 2024 *)
  • SageMath
    [3*binomial(n,4)//4 for n in range(61)] # G. C. Greubel, Oct 26 2024

Formula

From R. J. Mathar, Apr 15 2010: (Start)
a(n) = +5*a(n-1) -10*a(n-2) +10*a(n-3) -6*a(n-4) +6*a(n-5) -10*a(n-6) +10*a(n-7) -6*a(n-8) +6*a(n-9) -10*a(n-10) +10*a(n-11) -6*a(n-12) +6*a(n-13) -10*a(n-14) +10*a(n-15) -5*a(n-16) +a(n-17).
G.f.: x^5*(1-x+x^2)*(3-x-3*x^2+5*x^4-3*x^6-x^7+3*x^8)/((1-x)^5*(1+x^4)*(1+x^8) ). (End)

Extensions

More terms added by G. C. Greubel, Oct 26 2024