cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011946 Number of Barlow packings with group P63/mmc(S) that repeat after 4n layers.

Original entry on oeis.org

1, 2, 3, 8, 15, 30, 63, 128, 252, 510, 1023, 2040, 4095, 8190, 16365, 32768, 65535, 131040, 262143, 524280, 1048509, 2097150, 4194303, 8388480, 16777200, 33554430, 67108608, 134217720, 268435455, 536870370, 1073741823, 2147483648, 4294966269, 8589934590
Offset: 1

Views

Author

Keywords

Comments

Conjecture: Mobius transform of A127804. - R. J. Mathar, Sep 14 2011
a(n) = n*A000048(n), where A000048(n) = number of n-bead necklaces with beads of 2 colors and primitive period n, when turning over is not allowed but the two colors can be interchanged. - Paul D. Hanna, Dec 21 2016

Examples

			G.f. = x + 2*x^2 + 3*x^3 + 8*x^4 + 15*x^5 + 30*x^6 + 63*x^7 + 128*x^8 + ...
		

Crossrefs

Cf. A195095 (same sequence).

Programs

  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[#] * 2^(n/#-1) &, OddQ[#] &]; Array[a, 35] (* Amiram Eldar, Aug 29 2023 *)
  • PARI
    {a(n)=polcoeff(sum(m=1,n,-moebius(2*m)*x^m/(1-2*x^m+x*O(x^n))^1),n)}
    for(n=1,30,print1(a(n),", ")) \\ Paul D. Hanna, Sep 08 2011
    
  • PARI
    {a(n) =  sumdiv(n,d, if(d%2==1, moebius(d) * 2^(n/d-1) ) )}
    for(n=1,30,print1(a(n),", ")) \\ Paul D. Hanna, Sep 08 2011
  • Python
    a = lambda n: sum([sympy.mobius(d)*(2**(sympy.floor((2*n//d+1)/2)-1)) for d in sympy.divisors(n) if d%2==1])
    

Formula

From Paul D. Hanna, Sep 08 2011 (merged from duplicate A195095 Feb 06 2024): (Start)
G.f.: Sum_{n>=1} -moebius(2*n)*x^n/(1 - 2*x^n).
a(2^n) = 2^(2^n - 1).
a(p) = 2^(p-1) for odd prime p.
(End)
a(n) = floor(2^(n-1)/n)*n unless n=3k, k>4. - M. F. Hasler, Sep 08 2011
G.f.: Sum_{n>=1} moebius(2*n-1)*x^(2*n-1)/(1 - 2*x^(2*n-1)). - Mamuka Jibladze, Dec 04 2016
a(n) = Sum_{d|n, d odd} moebius(d) * 2^(n/d - 1), where moebius(n) = A008683(n). - Paul D. Hanna, Dec 21 2016, Bartosz Naskrecki, Jan 06 2024
Conjecture: a(n) = A045683(2n). - R. J. Mathar, Apr 15 2024

Extensions

More terms from Bartosz Naskrecki, Jan 06 2024