A011946 Number of Barlow packings with group P63/mmc(S) that repeat after 4n layers.
1, 2, 3, 8, 15, 30, 63, 128, 252, 510, 1023, 2040, 4095, 8190, 16365, 32768, 65535, 131040, 262143, 524280, 1048509, 2097150, 4194303, 8388480, 16777200, 33554430, 67108608, 134217720, 268435455, 536870370, 1073741823, 2147483648, 4294966269, 8589934590
Offset: 1
Examples
G.f. = x + 2*x^2 + 3*x^3 + 8*x^4 + 15*x^5 + 30*x^6 + 63*x^7 + 128*x^8 + ...
Links
- T. J. McLarnan, The numbers of polytypes in close packings and related structures, Zeits. Krist. 155, 269-291 (1981).
- Juan E. Iglesias, Enumeration of closest-packings by the space group: a simple approach, Zeits. Krist., 221(4), 237-245 (2006).
Programs
-
Mathematica
a[n_] := DivisorSum[n, MoebiusMu[#] * 2^(n/#-1) &, OddQ[#] &]; Array[a, 35] (* Amiram Eldar, Aug 29 2023 *)
-
PARI
{a(n)=polcoeff(sum(m=1,n,-moebius(2*m)*x^m/(1-2*x^m+x*O(x^n))^1),n)} for(n=1,30,print1(a(n),", ")) \\ Paul D. Hanna, Sep 08 2011
-
PARI
{a(n) = sumdiv(n,d, if(d%2==1, moebius(d) * 2^(n/d-1) ) )} for(n=1,30,print1(a(n),", ")) \\ Paul D. Hanna, Sep 08 2011
-
Python
a = lambda n: sum([sympy.mobius(d)*(2**(sympy.floor((2*n//d+1)/2)-1)) for d in sympy.divisors(n) if d%2==1])
Formula
From Paul D. Hanna, Sep 08 2011 (merged from duplicate A195095 Feb 06 2024): (Start)
G.f.: Sum_{n>=1} -moebius(2*n)*x^n/(1 - 2*x^n).
a(2^n) = 2^(2^n - 1).
a(p) = 2^(p-1) for odd prime p.
(End)
a(n) = floor(2^(n-1)/n)*n unless n=3k, k>4. - M. F. Hasler, Sep 08 2011
G.f.: Sum_{n>=1} moebius(2*n-1)*x^(2*n-1)/(1 - 2*x^(2*n-1)). - Mamuka Jibladze, Dec 04 2016
a(n) = Sum_{d|n, d odd} moebius(d) * 2^(n/d - 1), where moebius(n) = A008683(n). - Paul D. Hanna, Dec 21 2016, Bartosz Naskrecki, Jan 06 2024
Conjecture: a(n) = A045683(2n). - R. J. Mathar, Apr 15 2024
Extensions
More terms from Bartosz Naskrecki, Jan 06 2024
Comments