cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011955 Number of Barlow packings with group R3(bar)m(O) that repeat after 6n layers.

Original entry on oeis.org

1, 2, 4, 9, 19, 40, 80, 165, 330, 672, 1344, 2709, 5418, 10878, 21760, 43605, 87211, 174592, 349180, 698707, 1397418, 2795520, 5591040, 11183436, 22366890, 44736512, 89473020, 178951509, 357903000, 715816960, 1431633920, 2863289683, 5726579370, 11453202383, 22906404864, 45812897109, 91625794218
Offset: 2

Views

Author

Keywords

Programs

  • Maple
    # eq (6) in Iglesias Z Krist. 221 (2006)
    b := proc(p,q)
            local d;
            a := 0 ;
            for d from 1 to min(p,q) do
                    if modp(p,d)=0 and modp(q,d)=0 then
                            ph := floor(p/2/d) ;
                            qh := floor(q/2/d) ;
                            a := a+numtheory[mobius](d)*binomial(ph+qh,ph) ;
                    end if ;
            end do:
            a ;
    end proc:
    # eq (17) in Iglesias Z Krist. 221 (2006)
    bt := proc(p,q)
            if type(p+q,'odd') then
                    b(p,q) ;
            else
                    0;
            end if;
    end proc:
    # corrected eq (15) in Iglesias Z Krist. 221 (2006),  d|(p/2) and d|(q/2)
    bbtemp := proc(p,q)
            local d,ph,qh;
            a := 0 ;
            for d from 1 to min(p,q) do
                    if modp(p,2*d)=0 and modp(q,2*d)=0 then
                            ph := p/2/d ;
                            qh := q/2/d ;
                            a := a+numtheory[mobius](d)*binomial(ph+qh,ph) ;
                    end if ;
            end do:
            a ;
    end proc:
    # eq (16) in Iglesias Z Krist. 221 (2006)
    bb := proc(p,q)
            if type(p,'even') and type(q,'even') then
                    ( bbtemp(p,q)-bt(p/2,q/2) )/2 ;
            else
                    0 ;
            end if;
    end proc:
    tt := proc(p,q)
            if type(p+q,'odd') then
                    0 ;
            else  # p+q = 2n (below) is always even. - M. F. Hasler, May 27 2025
                    b(p,q)-bb(p,q);
            end if;
    end proc:
    # eq (29) in Iglesias
    A011955 := proc(n)
            local a,p,q,P ;
            P := 2*n ;
            a :=0 ;
            for q from 0 to P do
                    p := P-q ;
                    if modp(p-q,3) <> 0 and p < q then
                            a := a+tt(p,q) ;
                    end if;
            end do:
            a ;
    end proc:
    seq(A011955(n),n=2..40) ;  # R. J. Mathar, Apr 15 2024
  • PARI
    apply( {A011955(n)=my(P=2*n, b(p, q, f=1)=sum(d=1, min(p, q), if(p%(d*f)+q%(d*f)==0, moebius(d)*binomial(q\d\2+p\d\2, p\d\2)))); sum(q=n+1, 2*n, if(2*(n-q)%3, b(2*n-q, q)-if(q%2==0, b(2*n-q, q, 2)-if(n%2,b(n-q/2,q/2)))/2))}, [2..35]) \\ M. F. Hasler, May 27 2025