A011967 4th differences of Bell numbers.
4, 15, 67, 322, 1657, 9089, 52922, 325869, 2114719, 14418716, 103004851, 769052061, 5987339748, 48506099635, 408157244967, 3561086589202, 32164670915029, 300324194090773, 2894932531218482, 28773297907499129
Offset: 0
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..250
- Cohn, Martin; Even, Shimon; Menger, Karl, Jr.; Hooper, Philip K.; On the Number of Partitionings of a Set of n Distinct Objects, Amer. Math. Monthly 69 (1962), no. 8, 782--785. MR1531841.
- Cohn, Martin; Even, Shimon; Menger, Karl, Jr.; Hooper, Philip K.; On the Number of Partitionings of a Set of n Distinct Objects, Amer. Math. Monthly 69 (1962), no. 8, 782--785. MR1531841. [Annotated scanned copy]
- Jocelyn Quaintance and Harris Kwong, A combinatorial interpretation of the Catalan and Bell number difference tables, Integers, 13 (2013), #A29.
Programs
-
Mathematica
Differences[BellB[Range[0, 50]], 4] (* Vladimir Joseph Stephan Orlovsky, May 25 2011 *)
-
Python
# requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs. from itertools import accumulate A011967_list, blist, b = [4], [5, 7, 10, 15], 15 for _ in range(250): blist = list(accumulate([b]+blist)) b = blist[-1] A011967_list.append(blist[-5]) # Chai Wah Wu, Sep 20 2014