A011970 Apply (1+Shift)^3 to Bell numbers.
1, 4, 8, 15, 37, 114, 409, 1657, 7432, 36401, 192713, 1094076, 6618379, 42436913, 287151994, 2042803419, 15229360185, 118645071202, 963494800557, 8138047375093, 71351480138824, 648222594284197, 6092330403828749
Offset: 0
Keywords
Examples
a(3)=15 because the set {1,3,5,7} has 15 different partitions which are necessarily into blocks of nonconsecutive integers.
References
- Olivier Gérard and Karol Penson, A budget of set partitions statistics, in preparation, unpublished as of Sep 22 2011
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..500
- Cohn, Martin; Even, Shimon; Menger, Karl, Jr.; Hooper, Philip K.; On the Number of Partitionings of a Set of n Distinct Objects, Amer. Math. Monthly 69 (1962), no. 8, 782--785. MR1531841.
- Cohn, Martin; Even, Shimon; Menger, Karl, Jr.; Hooper, Philip K.; On the Number of Partitionings of a Set of n Distinct Objects, Amer. Math. Monthly 69 (1962), no. 8, 782--785. MR1531841. [Annotated scanned copy]
- Augustine O. Munagi, Extended set partitions with successions, European J. Combin. 29(5) (2008), 1298--1308.
- Jocelyn Quaintance and Harris Kwong, A combinatorial interpretation of the Catalan and Bell number difference tables, Integers, 13 (2013), #A29.
Crossrefs
Programs
-
Maple
with(combinat): 1,4,8,seq(`if`(n>2,bell(n)+3*bell(n-1)+3*bell(n-2)+bell(n-3),NULL),n=3..22); # Augustine O. Munagi, Jul 17 2008
-
Python
# requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs. from itertools import accumulate A011970_list, blist, b, b2, b3 = [1,4,8], [1, 2], 2, 1, 1 for _ in range(498): blist = list(accumulate([b]+blist)) A011970_list.append(3*(b+b2)+b3+blist[-1]) b3, b2, b = b2, b, blist[-1] # Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 20 2014
Formula
If n>2, then bell(n)+3*bell(n-1)+3*bell(n-2)+bell(n-3). - Augustine O. Munagi, Jul 17 2008
Comments