cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A012109 sec(arcsin(sinh(x)))=1+1/2!*x^2+13/4!*x^4+421/6!*x^6+26713/8!*x^8...

Original entry on oeis.org

1, 1, 13, 421, 26713, 2794441, 436186213, 95033434861, 27555582190513, 10260037095841681, 4771143086720391613, 2710025439753915534901, 1846296024220715321941513, 1486014763274444231870834521
Offset: 0

Views

Author

Patrick Demichel (patrick.demichel(AT)hp.com)

Keywords

Examples

			G.f. = 1 + x + 13*x^2 + 421*x^3 + 26713*x^4 + 2794441*x^5 + ...
		

Crossrefs

Cf. A012261.

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, With[ {m = 2 n + 1}, m! SeriesCoefficient[ EllipticF[ I x, -1] / I, {x, 0, m}]]]; (* Michael Somos, May 05 2017 *)
    a[ n_] := If[ n < 0, 0, With[ {m = 2 n}, m! SeriesCoefficient[ 1 / Sqrt[1 - Sinh[x]^2], {x, 0, m}]]]; (* Michael Somos, May 05 2017 *)
  • PARI
    {a(n) = my(m); if( n<0, 0, m = 2*n; m! * polcoeff( 1 / sqrt(1 - sinh(x + x * O(x^m))^2), m))}; /* Michael Somos, May 05 2017 */

Formula

From Michael Somos, May 05 2017: (Start)
E.g.f.: Sum_{n>=0} a(n) * x^(2*n) / (2*n)! = sec(arcsin(sinh(x))) = 1 / sqrt(1 - sinh(x)^2).
E.g.f.: Sum_{n>=0} a(n) * x^(2*n+1) / (2*n+1)! = F(i x| -1) / i where F(phi|m) is the elliptic integral of the 1st kind.
E.g.f. 1 / sqrt(1 - sinh(x)^2) = y satisfies 0 = y''*y + 2*y^2 - 3*y^4 - 3*y'^2 = y - 6*y^3 + 6*y^5 - y''.
a(n) = A012261(2*n). (End)