cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A012132 Numbers z such that x*(x+1) + y*(y+1) = z*(z+1) is solvable in positive integers x,y.

Original entry on oeis.org

3, 6, 8, 10, 11, 13, 15, 16, 18, 20, 21, 23, 26, 27, 28, 31, 33, 36, 37, 38, 40, 41, 43, 44, 45, 46, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 71, 73, 74, 75, 76, 77, 78, 80, 81, 83, 86, 88, 89, 91, 92, 93
Offset: 1

Views

Author

Sander van Rijnswou (sander(AT)win.tue.nl)

Keywords

Comments

Theorem (Sierpinski, 1963): n is a term iff n^2+(n+1)^2 is a composite number. - N. J. A. Sloane, Feb 29 2020
For n > 1, A047219 is a subset of this sequence. This is because n^2 + (n+1)^2 is divisible by 5 if n is (1 or 3) mod 5 (also see A027861). - Dmitry Kamenetsky, Sep 02 2008
From Hermann Stamm-Wilbrandt, Sep 10 2014: (Start)
For n > 0, A212160 is a subset of this sequence (n^2 + (n+1)^2 is divisible by 13 if n == (2 or 10) (mod 13)).
For n >= 0, A212161 is a subset of this sequence (n^2 + (n+1)^2 is divisible by 17 if n == (6 or 10) (mod 17)).
The above are for divisibility by 5, 13, 17; notation (1,3,5), (2,10,13), (6,10,17). Divisibility by p for a and p-a-1; notation (a,p-a-1,p). These are the next tuples: (8,20,29), (15,21,37), (4,36,41), (11,41,53), ... . The corresponding sequences are a subset of this sequence (8,20,37,49,66,78,... for (8,20,29)). These sequences have no entries in the OEIS yet. For any prime of the form 4*k+1 there is exactly one of these tuples/sequences.
For n > 1, A000217 (triangular numbers) is a subset of this sequence (3,6,10,15,...); z=A000217(n), y=z-1, x=n.
For n > 0, A001652 is a subset of this sequence; z=A001652(n), x=y=A053141(n).
For n > 1, A001108(=A115598) is a subset of this sequence; z=A001108(n), x=A076708(n), y=x+1.
For n > 0, A124124(2*n+1)(=A098790(2*n)) is a subset of this sequence (6,37,218,...); z=A124124(2*n+1), x=a(n)-1, y=a(n)+1, a(m) = 6*a(m-1) - a(m-2) + 2, a(0)=0, a(1)=4.
(End)

References

  • Aviezri S. Fraenkel, Diophantine equations involving generalized triangular and tetrahedral numbers, pp. 99-114 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.

Crossrefs

Complement of A027861. - Michael Somos, Jun 08 2000

Programs

Extensions

More terms and references from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Feb 09 2000