A013676 Decimal expansion of zeta(18).
1, 0, 0, 0, 0, 0, 3, 8, 1, 7, 2, 9, 3, 2, 6, 4, 9, 9, 9, 8, 3, 9, 8, 5, 6, 4, 6, 1, 6, 4, 4, 6, 2, 1, 9, 3, 9, 7, 3, 0, 4, 5, 4, 6, 9, 7, 2, 1, 8, 9, 5, 3, 3, 3, 1, 1, 4, 3, 1, 7, 4, 4, 2, 9, 9, 8, 7, 6, 3, 0, 0, 3, 9, 5, 4, 2, 6, 5, 0, 0, 4, 5, 6, 3, 8, 0, 0, 1, 9, 6, 8, 6, 6, 8, 9, 8, 9, 6, 4
Offset: 1
Examples
1.0000038172932649998398564616446219397...
References
- Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.
Links
- Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Programs
-
Mathematica
RealDigits[Zeta[18], 10, 100][[1]] (* Alonso del Arte, Feb 07 2016 *)
-
PARI
zeta(18) \\ Michel Marcus, Feb 12 2016
Formula
zeta(18) = Sum_{n >= 1} (A010052(n)/n^9) = Sum_{n >= 1} ( (floor(sqrt(n))-floor(sqrt(n-1)))/n^9 ). - Mikael Aaltonen, Mar 06 2015
zeta(18) = Product_{k>=1} 1/(1 - 1/prime(k)^18). - Vaclav Kotesovec, May 02 2020