A013677 Decimal expansion of zeta(19).
1, 0, 0, 0, 0, 0, 1, 9, 0, 8, 2, 1, 2, 7, 1, 6, 5, 5, 3, 9, 3, 8, 9, 2, 5, 6, 5, 6, 9, 5, 7, 7, 9, 5, 1, 0, 1, 3, 5, 3, 2, 5, 8, 5, 7, 1, 1, 4, 4, 8, 3, 8, 6, 3, 0, 2, 3, 5, 9, 3, 3, 0, 4, 6, 7, 6, 1, 8, 2, 3, 9, 4, 9, 7, 0, 5, 3, 4, 1, 3, 0, 9, 3, 1, 2, 6, 6, 4, 2, 2, 7, 1, 1, 8, 0, 7, 6, 3, 0
Offset: 1
Examples
1.0000019082127165539389256569577951013532585711448386302359330467618239...
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.
Links
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Programs
-
Mathematica
RealDigits[Zeta[19], 10, 75][[1]] (* Vincenzo Librandi, Feb 24 2015 *)
Formula
zeta(19) = Sum_{n >= 1} (A010052(n)/n^(19/2)) = Sum_{n >= 1} ( (floor(sqrt(n)) - floor(sqrt(n-1)))/n^(19/2) ). - Mikael Aaltonen, Feb 23 2015
zeta(19) = Product_{k>=1} 1/(1 - 1/prime(k)^19). - Vaclav Kotesovec, May 02 2020