cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A013678 Decimal expansion of zeta(20).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 9, 5, 3, 9, 6, 2, 0, 3, 3, 8, 7, 2, 7, 9, 6, 1, 1, 3, 1, 5, 2, 0, 3, 8, 6, 8, 3, 4, 4, 9, 3, 4, 5, 9, 4, 3, 7, 9, 4, 1, 8, 7, 4, 1, 0, 5, 9, 5, 7, 5, 0, 0, 5, 6, 4, 8, 9, 8, 5, 1, 1, 3, 7, 5, 1, 3, 7, 3, 1, 1, 4, 3, 9, 0, 0, 2, 5, 7, 8, 3, 6, 0, 9, 7, 9, 7, 6, 3, 8, 7, 4, 7
Offset: 1

Views

Author

Keywords

Examples

			1.00000095396203387279611315203868344934594379418741059575005648985113...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.

Programs

  • Mathematica
    RealDigits[Zeta[20],10,120][[1]] (* Harvey P. Dale, Jun 21 2015 *)

Formula

zeta(20) = Sum_{n >= 1} (A010052(n)/n^10) = Sum_{n >= 1} ( (floor(sqrt(n))-floor(sqrt(n-1)))/n^10 ). - Mikael Aaltonen, Mar 06 2015
zeta(20) = 174611 * Pi^20 / 1531329465290625. - Vaclav Kotesovec, May 15 2019
zeta(20) = Product_{k>=1} 1/(1 - 1/prime(k)^20). - Vaclav Kotesovec, May 02 2020