A013946 Least d for which the number with continued fraction [n,n,n,n...] is in Q(sqrt(d)).
5, 2, 13, 5, 29, 10, 53, 17, 85, 26, 5, 37, 173, 2, 229, 65, 293, 82, 365, 101, 445, 122, 533, 145, 629, 170, 733, 197, 5, 226, 965, 257, 1093, 290, 1229, 13, 1373, 362, 61, 401, 1685, 442, 1853, 485, 2029, 530, 2213, 577, 2405, 626, 2605, 677, 2813, 730, 3029, 785, 3253
Offset: 1
Keywords
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
- Robin James Spivey, Close encounters of the golden and silver ratios, Notes on Number Theory and Discrete Mathematics (2019) Vol. 25, No. 3, 170-184.
- Ofer Yifrach-Stav, Fast and Private Pool Testing and Contributions to Experimental Mathematics, Doctoral thesis, École normale supérieure (Paris, France), HAL Science [math.cs] 2024, Art. No. tel-04513104. See p. 104.
Crossrefs
Programs
-
Mathematica
z = 5000; u = Table[{p, e} = Transpose[FactorInteger[n]]; Times @@ (p^Mod[e, 2]), {n, z}]; Table[u[[n^2 + 4]], {n, 1, Sqrt[z - 4]}] (* Clark Kimberling, Jul 20 2015, based on T. D. Noe's program at A007913 *)
-
PARI
A013946(n)=core(n^2+4) \\ M. F. Hasler, Dec 08 2010
Formula
a(n) = A007913(n^2+4). - David W. Wilson, Dec 08 2010
Extensions
More terms from David W. Wilson
Comments