cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A025765 Expansion of 1/((1-x)(1-x^2)(1-x^9)).

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 49, 51, 54, 56, 59, 61, 64, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 100, 103, 107, 110
Offset: 0

Views

Author

Keywords

Programs

  • Maple
    A014018 := proc(n) if n < 0 then 0; else coeftayl(1/(1+x^3+x^6),x=0,n) ; end if; end proc:
    A061347 := proc(n) op(1+(n mod 3),[1,1,-2]) ; end proc:
    A025765 := proc(n) 1/3*n +173/216 +1/36*n^2 +1/8*(-1)^n + ( A014018(n-2)+A014018(n-4)+A014018(n-5))/3 - A061347(n+2)/27 ; end proc:
    seq(A025765(n),n=0..40) ; # R. J. Mathar, Mar 22 2011
  • Mathematica
    CoefficientList[Series[1/((1-x)(1-x^2)(1-x^9)),{x,0,60}],x] (* or *) LinearRecurrence[{1,1,-1,0,0,0,0,0,1,-1,-1,1},{1,1,2,2,3,3,4,4,5,6,7,8},60] (* Harvey P. Dale, Aug 14 2021 *)
  • PARI
    Vec(1/((1-x)*(1-x^2)*(1-x^9))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

Formula

a(n)= +a(n-1) +a(n-2) -a(n-3) +a(n-9) -a(n-10) -a(n-11) +a(n-12). - R. J. Mathar, Mar 22 2011

A099917 Expansion of (1+x^2)^2/(1+x^3+x^6).

Original entry on oeis.org

1, 0, 2, -1, 1, -2, 0, -1, 0, 1, 0, 2, -1, 1, -2, 0, -1, 0, 1, 0, 2, -1, 1, -2, 0, -1, 0, 1, 0, 2, -1, 1, -2, 0, -1, 0, 1, 0, 2, -1, 1, -2, 0, -1, 0, 1, 0, 2, -1, 1, -2, 0, -1, 0, 1, 0, 2, -1, 1, -2, 0, -1, 0, 1, 0, 2, -1, 1, -2, 0, -1, 0, 1, 0, 2, -1, 1, -2, 0, -1, 0, 1, 0, 2, -1, 1, -2, 0, -1, 0, 1, 0, 2, -1, 1, -2, 0, -1, 0, 1, 0
Offset: 0

Views

Author

Paul Barry, Oct 30 2004

Keywords

Comments

The denominator is the 9th cyclotomic polynomial. The g.f. is a Chebyshev transform of that of (-1)^n*A052931(n) by the Chebyshev mapping g(x)->(1/(1+x^2))g(x/(1+x^2)). The reciprocal of the 9th cyclotomic polynomial A014018 is given by sum{k=0..n, A099917(n-k)(k/2+1)(-1)^(k/2)(1+(-1)^k)/2}.

Crossrefs

Cf. A099916.

Formula

a(n)=sum{k=0..floor(n/2), C(n-k, k)(-1)^k*sum{j=0..n-2k, C(j, n-2k-2j)3^k(-1/3)^(n-2k)}}; a(n)=sum{k=0..n, A014018(n-k)C(2, k/2)(1+(-1)^k)/2}.
Showing 1-2 of 2 results.