A300254 a(n) = 25*(n + 1)*(4*n + 3)*(5*n + 4)/3.
100, 1050, 3850, 9500, 19000, 33350, 53550, 80600, 115500, 159250, 212850, 277300, 353600, 442750, 545750, 663600, 797300, 947850, 1116250, 1303500, 1510600, 1738550, 1988350, 2261000, 2557500, 2878850, 3226050, 3600100, 4002000, 4432750, 4893350, 5384800, 5908100, 6464250
Offset: 0
References
- Michael D. Hirschhorn, Congruences modulo 5 for partitions into at most four parts, The Fibonacci Quarterly, Vol. 56, Number 1, 2018, pages 32-37 [the equation 1.7 contains a typo].
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
GAP
List([0..40], n -> 25*(n+1)*(4*n+3)*(5*n+4)/3);
-
Julia
[div(25*(n+1)*(4*n+3)*(5*n+4), 3) for n in 0:40] |> println
-
Magma
[25*(n+1)*(4*n+3)*(5*n+4)/3: n in [0..40]];
-
Mathematica
Table[25 (n + 1) (4 n + 3) (5 n + 4)/3, {n, 0, 40}]
-
Maxima
makelist(25*(n+1)*(4*n+3)*(5*n+4)/3, n, 0, 40);
-
PARI
vector(40, n, n--; 25*(n+1)*(4*n+3)*(5*n+4)/3)
-
PARI
Vec(50*(2 + 13*x + 5*x^2) / (1 - x)^4 + O(x^60)) \\ Colin Barker, Mar 13 2018
-
Python
[25*(n+1)*(4*n+3)*(5*n+4)/3 for n in range(40)]
-
Sage
[25*(n+1)*(4*n+3)*(5*n+4)/3 for n in (0..40)]
Comments