cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014120 Smallest number of persistence n over product-of-nonzero-digits function.

Original entry on oeis.org

0, 10, 25, 39, 77, 679, 6788, 68889, 2677889, 26888999, 3778888999, 267777777889999, 77777777788888888888899999, 37777777777777777777777777778888889999999999999999999
Offset: 0

Views

Author

Keywords

Comments

Comments from Marc Lapierre, Sep 09 2020, updated Feb 19 2025: (Start)
Let d(b) denote a string of b copies of the digit d. For example, 3(5) would represent 33333.
Here are recent discoveries and the initials of the discoverers:
14 2(1)6(1)7(1)8(99)9(10) by WW
15 6(1)7(157)8(46)9(25) by WW
16 3(1)7(54)8(82)9(353) by WW
17 3(1)7(27)8(622)9(399) by WW
18 3(1)7(140)8(258)9(1946) by WW
19 2(1)7(122)8(498)9(4297) by ML
20 2(1)7(723)8(211)9(9825) by ML
Conjectured terms follow:
21 2(1)6(1)7(822)8(29)9(22601) by CC
22 2(1)7(325)8(1678)9(49461) by CC
23 2(1)7(1199)8(662)9(110077) by CC
24 7(1335)8(1609)9(241857) by CC
25 4(1)7(155)8(1135)9(540199) by CC
26 6(1)7(124)8(762)9(1192494) by CC
27 4(1)7(94)8(583)9(2616367) by CC
28 3(1)5(6)9(5788986) by CC
29 7(20)8(24)9(12878515) by CC
30 8(67)9(29136478) by CC
31 7(9)8(17)9(64768493) by CC
32 6(1)7(8)8(5)9(144417969) by CC
33 6(1)7(2)8(8)9(324379548) by CC
34 2(1)6(1)7(1)8(31)9(728759871) by CC
35 2(1)6(1)8(555702)9(1553958443) by CC
36 3(1)8(10311016)9(3652133953) by CC
37 2(1)6(1)8(1482224)9(9136624827) by CC
38 3(1)8(1469099)9(19262606200) by CC
39 8(30408394)9(42905304588) by CC
WW=Wilfred Whiteside & Phil Carmody (see link)
ML=Marc Lapierre
CC=Christophe Clavier
It seems a safe conjecture that this sequence is infinite.
(End)

Crossrefs

Cf. A003001.

Extensions

Edited by N. J. A. Sloane, Sep 11 2020 following suggestions from Marc Lapierre, Sep 09 2020