cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A046500 Smallest prime with multiplicative persistence n.

Original entry on oeis.org

2, 11, 29, 47, 277, 769, 8867, 186889, 2678789, 26899889, 3778888999, 277777788888989
Offset: 0

Views

Author

Patrick De Geest, Sep 15 1998

Keywords

Comments

The persistence of a number is the number of times you need to multiply the digits together before reaching a single digit.

Examples

			47 -> 28 -> 16 -> 6 has persistence 3.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Length[NestWhileList[Times@@IntegerDigits[#]&,n,#>9&]]-1; t={}; i=1; Do[While[a[p=Prime[i]]!=n,i++]; AppendTo[t,p],{n,0,9}]; t (* Jayanta Basu, Jun 02 2013 *)

Extensions

a(10)-a(11) found by Jud McCranie

A046510 Numbers with multiplicative persistence value 1.

Original entry on oeis.org

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 30, 31, 32, 33, 40, 41, 42, 50, 51, 60, 61, 70, 71, 80, 81, 90, 91, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 130, 131, 132, 133
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1998

Keywords

Comments

Numbers 0 to 9 have a multiplication persistence of 0, not 1. - Daniel Mondot, Mar 12 2022

Examples

			24 -> 2 * 4 = [ 8 ] -> one digit in one step.
		

Crossrefs

Numbers with multiplicative persistence m: this sequence (m=1), A046511 (m=2), A046512 (m=3), A046513 (m=4), A046514 (m=5), A046515 (m=6), A046516 (m=7), A046517 (m=8), A046518 (m=9), A352531 (m=10), A352532 (m=11).

Programs

  • Mathematica
    Select[Range[10, 121], IntegerLength[Times @@ IntegerDigits[#]] <= 1 &] (* Jayanta Basu, Jun 26 2013 *)
  • PARI
    isok(n) = my(d=digits(n)); (#d > 1) && (#digits(prod(k=1, #d, d[k])) <= 1); \\ Michel Marcus, Apr 12 2018 and Mar 13 2022
    
  • Python
    from math import prod
    def ok(n): return n > 9 and prod(map(int, str(n))) < 10
    print([k for k in range(134) if ok(k)]) # Michael S. Branicky, Mar 13 2022

Extensions

Incorrect terms 0 to 9 removed by Daniel Mondot, Mar 12 2022

A046511 Numbers with multiplicative persistence value 2.

Original entry on oeis.org

25, 26, 27, 28, 29, 34, 35, 36, 37, 38, 43, 44, 45, 46, 48, 52, 53, 54, 56, 58, 62, 63, 64, 65, 67, 72, 73, 76, 82, 83, 84, 85, 92, 99, 125, 126, 127, 128, 129, 134, 135, 136, 137, 138, 143, 144, 145, 146, 148, 152, 153, 154, 156, 158, 162, 163, 164, 165, 167, 172
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1998

Keywords

Examples

			129 -> [ 18 ] -> [ 8 ] = one digit in two steps.
		

Crossrefs

Programs

  • Mathematica
    mpQ[n_]:=Length[NestWhileList[Times@@IntegerDigits[#]&,n,#>9&]]==3; Select[Range[200], mpQ] (* Harvey P. Dale, Apr 12 2014 *)
  • Python
    from math import prod
    def pd(n): return prod(map(int, str(n)))
    def ok(n): return n > 9 and (p := pd(n)) > 9 and pd(p) < 10
    print([k for k in range(173) if ok(k)]) # Michael S. Branicky, Jan 16 2022

A046518 Numbers with multiplicative persistence value 9.

Original entry on oeis.org

26888999, 26889899, 26889989, 26889998, 26898899, 26898989, 26898998, 26899889, 26899898, 26899988, 26988899, 26988989, 26988998, 26989889, 26989898, 26989988, 26998889, 26998898, 26998988, 26999888, 28688999
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1998

Keywords

Examples

			26888999 -> [ 4478976 ][ 338688 ][ 27648 ][ 2688 ][ 768 ][ 336 ][ 54 ][ 20 ][ 0 ] -> one digit in nine steps.
		

Crossrefs

Programs

  • Maple
    mp:= proc(n) option remember;
        if n <= 9 then return 0 fi;
        1+procname(convert(convert(n,base,10),`*`))
    end proc:
    filter:= proc(n)
      evalb(mp(convert(convert(n,base,10),`*`))=8)
    end proc:
    select(filter, [$26111111..29999999]); # Robert Israel, Feb 12 2019

Extensions

Offset corrected by Robert Israel, Feb 12 2019

A046512 Numbers with multiplicative persistence value 3.

Original entry on oeis.org

39, 47, 49, 55, 57, 59, 66, 68, 69, 74, 75, 78, 79, 86, 87, 88, 89, 93, 94, 95, 96, 97, 98, 139, 147, 149, 155, 157, 159, 166, 168, 169, 174, 175, 178, 179, 186, 187, 188, 189, 193, 194, 195, 196, 197, 198, 227, 229, 236, 238, 239, 246, 247, 248, 249, 263, 264
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1998

Keywords

Examples

			239 -> [ 54 ][ 20 ][ 0 ] -> one digit in three steps.
		

Crossrefs

Programs

  • Maple
    mp:= proc(n) option remember;
        if n <= 9 then return 0 fi;
        1+procname(convert(convert(n,base,10),`*`))
    end proc:
    select(mp=3, [$1..1000]); # Robert Israel, Feb 12 2019
  • Mathematica
    mp3Q[n_]:=Length[NestWhileList[Times@@IntegerDigits[#]&,n,#>9&]]==4; Select[Range[300],mp3Q] (* Harvey P. Dale, May 23 2015 *)

Extensions

Offset corrected by Robert Israel, Feb 12 2019

A046513 Numbers with multiplicative persistence value 4.

Original entry on oeis.org

77, 177, 268, 277, 286, 348, 355, 377, 378, 379, 384, 387, 397, 438, 446, 464, 467, 476, 477, 483, 489, 498, 535, 553, 557, 575, 628, 644, 647, 668, 674, 677, 678, 682, 686, 687, 699, 717, 727, 737, 738, 739, 746, 747, 755, 764, 767, 768, 771, 772, 773
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1998

Keywords

Examples

			737 -> [ 147 ][ 28 ][ 16 ][ 6 ] -> one digit in four steps.
		

Crossrefs

Programs

  • Maple
    mp:= proc(n) option remember;
        if n <= 9 then return 0 fi;
        1+procname(convert(convert(n,base,10),`*`))
    end proc:
    select(mp=4, [$1..1000]); # Robert Israel, Feb 12 2019
  • Mathematica
    pr4Q[n_] := Length[NestWhileList[Times @@ IntegerDigits[#] &, n, # > 9 &]] == 5; Select[Range[773], pr4Q] (* Jayanta Basu, Jun 26 2013 *)

Extensions

Offset corrected by Robert Israel, Feb 12 2019

A046514 Numbers with multiplicative persistence value 5.

Original entry on oeis.org

679, 688, 697, 769, 796, 868, 886, 967, 976, 1679, 1688, 1697, 1769, 1796, 1868, 1886, 1967, 1976, 2379, 2388, 2397, 2468, 2486, 2648, 2684, 2688, 2739, 2777, 2793, 2838, 2846, 2864, 2868, 2883, 2886, 2937, 2973, 3279, 3288, 3297, 3367, 3376, 3448
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1998

Keywords

Examples

			2777 -> [ 686 ][ 288 ][ 128 ][ 16 ][ 6 ] -> one digit in five steps.
		

Crossrefs

Programs

  • Maple
    mp:= proc(n) option remember;
        if n <= 9 then return 0 fi;
        1+procname(convert(convert(n,base,10),`*`))
    end proc:
    select(mp=5, [$1..4000]); # Robert Israel, Feb 12 2019

Extensions

Offset corrected by Robert Israel, Feb 12 2019

A046515 Numbers with multiplicative persistence value 6.

Original entry on oeis.org

6788, 6878, 6887, 7688, 7868, 7886, 8678, 8687, 8768, 8786, 8867, 8876, 16788, 16878, 16887, 17688, 17868, 17886, 18678, 18687, 18768, 18786, 18867, 18876, 23788, 23878, 23887, 24678, 24687, 24768, 24786, 24867, 24876, 26478, 26487
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1998

Keywords

Examples

			6788 -> [ 2688 ][ 768 ][ 336 ][ 54 ][ 20 ][ 0 ] -> one digit in six steps.
		

Crossrefs

Programs

  • Maple
    mp:= proc(n) option remember;
        if n <= 9 then return 0 fi;
        1+procname(convert(convert(n,base,10),`*`))
    end proc:
    select(mp=6, [$1..30000]); # Robert Israel, Feb 12 2019

Extensions

Offset corrected by Robert Israel, Feb 12 2019

A046516 Numbers with multiplicative persistence value 7.

Original entry on oeis.org

68889, 68898, 68988, 69888, 86889, 86898, 86988, 88689, 88698, 88869, 88896, 88968, 88986, 89688, 89868, 89886, 96888, 98688, 98868, 98886, 168889, 168898, 168988, 169888, 186889, 186898, 186988, 188689, 188698, 188869, 188896, 188968
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1998

Keywords

Comments

From Daniel Mondot, Mar 26 2022: (Start)
The product of the digits of each term is 27648, 47628, 64827, 84672, 134217728, 914838624, 1792336896, 3699376128, 48814981614, 134481277728, 147483721728 or 1438916737499136 (sequence A350185).
The first 62 terms produce 27648.
The first term that produces 47628 is a(63).
The first term that produces 64827 is a(233).
The first term that produces 84672 is a(235).
The first term that produces 134217728 is a(1753110).
The first term that produces 914838624 is a(17835449).
The first term that produces 1792336896 is a(18235677).
The first term that produces 3699376128 is a(23853261).
The first term that produces 48814981614 is a(66441891).
The first term that produces 134481277728 is a(452601087).
The first term that produces 147483721728 is a(425636434).
The first term that produces 1438916737499136 is somewhere after a(500*10^6). (End)

Examples

			68889 -> [ 27648 ][ 2688 ][ 768 ][ 336 ][ 54 ][ 20 ][ 0 ] -> one digit in seven steps.
		

Crossrefs

Programs

  • Maple
    mp:= proc(n) option remember;
        if n <= 9 then return 0 fi;
        1+procname(convert(convert(n,base,10),`*`))
    end proc:
    select(mp=7, [$1..200000]); # Robert Israel, Feb 12 2019

A046517 Numbers with multiplicative persistence value 8.

Original entry on oeis.org

2677889, 2677898, 2677988, 2678789, 2678798, 2678879, 2678897, 2678978, 2678987, 2679788, 2679878, 2679887, 2687789, 2687798, 2687879, 2687897, 2687978, 2687987, 2688779, 2688797, 2688977, 2689778, 2689787, 2689877
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1998

Keywords

Examples

			2677889 -> [ 338688 ][ 27648 ][ 2688 ][ 768 ][ 336 ][ 54 ][ 20 ][ 0 ] -> one digit in eight steps.
		

Crossrefs

Programs

  • Maple
    mp:= proc(n) option remember;
        if n <= 9 then return 0 fi;
        1+procname(convert(convert(n,base,10),`*`))
    end proc:
    select(mp=8, [$1..4000000]); # Robert Israel, Feb 12 2019
  • Mathematica
    okQ[n_]:=Length[NestWhileList[Times@@IntegerDigits[#]&, n,IntegerLength[ #]>1&]]==9; Select[Range[2700000],okQ]  (* Harvey P. Dale, Jan 29 2011 *)

Extensions

Offset corrected by Robert Israel, Feb 12 2019
Showing 1-10 of 12 results. Next