cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A046510 Numbers with multiplicative persistence value 1.

Original entry on oeis.org

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 30, 31, 32, 33, 40, 41, 42, 50, 51, 60, 61, 70, 71, 80, 81, 90, 91, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 130, 131, 132, 133
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1998

Keywords

Comments

Numbers 0 to 9 have a multiplication persistence of 0, not 1. - Daniel Mondot, Mar 12 2022

Examples

			24 -> 2 * 4 = [ 8 ] -> one digit in one step.
		

Crossrefs

Numbers with multiplicative persistence m: this sequence (m=1), A046511 (m=2), A046512 (m=3), A046513 (m=4), A046514 (m=5), A046515 (m=6), A046516 (m=7), A046517 (m=8), A046518 (m=9), A352531 (m=10), A352532 (m=11).

Programs

  • Mathematica
    Select[Range[10, 121], IntegerLength[Times @@ IntegerDigits[#]] <= 1 &] (* Jayanta Basu, Jun 26 2013 *)
  • PARI
    isok(n) = my(d=digits(n)); (#d > 1) && (#digits(prod(k=1, #d, d[k])) <= 1); \\ Michel Marcus, Apr 12 2018 and Mar 13 2022
    
  • Python
    from math import prod
    def ok(n): return n > 9 and prod(map(int, str(n))) < 10
    print([k for k in range(134) if ok(k)]) # Michael S. Branicky, Mar 13 2022

Extensions

Incorrect terms 0 to 9 removed by Daniel Mondot, Mar 12 2022

A350184 Numbers of multiplicative persistence 5 which are themselves the product of digits of a number.

Original entry on oeis.org

2688, 18816, 26244, 98784, 222264, 262144, 331776, 333396, 666792, 688128, 1769472, 2939328, 3687936, 4214784, 4917248, 13226976, 19361664, 38118276, 71663616, 111476736, 133413966, 161414428, 169869312, 184473632, 267846264, 368947264, 476171136, 1783627776
Offset: 1

Views

Author

Daniel Mondot, Dec 18 2021

Keywords

Comments

The multiplicative persistence of a number mp(n) is the number of times the product of digits function p(n) must be applied to reach a single digit, i.e., A031346(n).
The product of digits function partitions all numbers into equivalence classes. There is a one-to-one correspondence between values in this sequence and equivalence classes of numbers with multiplicative persistence 5.
There are infinitely many numbers with mp of 1 to 11, but the classes of numbers (p(n)) are postulated to be finite for sequences A350181....
Equivalently:
This sequence consists of all numbers A007954(k) such that A031346(k) = 6.
These are the numbers k in A002473 such that A031346(k) = 5.
Or:
- they factor into powers of 2, 3, 5 and 7 exclusively.
- p(n) goes to a single digit in 5 steps.
Postulated to be finite and complete.

Examples

			2688 is in this sequence because:
- 2688 goes to a single digit in 5 steps: p(2688)=768, p(768)=336, p(336)=54, p(54)=20, p(20)=0.
- p(27648) = p(47628) = 2688, etc.
331776 is in this sequence because:
- 331776 goes to a single digit in 5 steps: p(331776)=2646, p(2646)=288, p(288)=128, p(128)=16, p(16)=6.
- p(914838624) = p(888899) = 331776, etc.
		

Crossrefs

Intersection of A002473 and A046514 (all numbers with mp of 5).
Cf. A003001 (smallest number with multiplicative persistence n), A031346 (multiplicative persistence), A031347 (multiplicative digital root).
Cf. A350180, A350181, A350182, A350183, A350185, A350186, A350187 (numbers with mp 1 to 4 and 6 to 10 that are themselves 7-smooth numbers).

Programs

  • Mathematica
    mx=10^10;lst=Sort@Flatten@Table[2^i*3^j*5^k*7^l,{i,0,Log[2,mx]},{j,0,Log[3,mx/2^i]},{k,0,Log[5,mx/(2^i*3^j)]},{l,0,Log[7,mx/(2^i*3^j*5^k)]}];
    Select[lst,Length@Most@NestWhileList[Times@@IntegerDigits@#&,#,#>9&]==5&] (* code for 7-smooth numbers from A002473. - Giorgos Kalogeropoulos, Jan 16 2022 *)
  • Python
    from math import prod
    def hd(n):
        while (n&1) == 0:  n >>= 1
        while (n%3) == 0:  n /= 3
        while (n%5) == 0:  n /= 5
        while (n%7) == 0:  n /= 7
        return(n)
    def pd(n): return prod(map(int, str(n)))
    def ok(n):
        if hd(n) > 9: return False
        return (p := pd(n)) > 9 and (q := pd(p)) > 9 and (r := pd(q)) > 9 and (s := pd(r)) > 9 and pd(s) < 10
    print([k for k in range(10,476200000) if ok(k)])

A046505 Primes with multiplicative persistence value 5.

Original entry on oeis.org

769, 967, 1697, 2777, 3637, 3673, 4483, 6197, 6337, 6373, 6719, 6733, 6779, 6791, 6917, 6971, 6977, 7559, 7691, 7727, 8443, 8681, 8861, 9677, 9767, 12379, 12739, 12973, 13297, 13367, 13729, 13763, 14779, 14797, 14843, 17239, 17293, 17497
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1998

Keywords

Examples

			769 -> [ 378 ][ 168 ][ 48 ][ 32 ][ 6 ] -> one digit in five steps.
		

Crossrefs

Intersection of A000040 and A046514.
Cf. A046500.

Programs

  • Mathematica
    mp5Q[n_]:=Length[NestWhileList[Times@@IntegerDigits[#]&,n,#>9&]]==6; Select[ Prime[Range[2100]],mp5Q] (* Harvey P. Dale, Dec 30 2019 *)

A199995 Composite numbers whose multiplicative persistence is 5.

Original entry on oeis.org

679, 688, 697, 796, 868, 886, 976, 1679, 1688, 1769, 1796, 1868, 1886, 1967, 1976, 2379, 2388, 2397, 2468, 2486, 2648, 2684, 2688, 2739, 2793, 2838, 2846, 2864, 2868, 2883, 2886, 2937, 2973, 3279, 3288, 3297, 3367, 3376, 3448, 3484, 3488, 3729, 3736, 3763
Offset: 1

Views

Author

Jaroslav Krizek, Nov 13 2011

Keywords

Comments

Complement of A046505 with respect to A046514.

Examples

			679 -> [ 378 ][ 168 ][ 48 ][ 32 ][ 6 ] -> one digit in five steps.
		

Crossrefs

Cf. A046505 (primes whose multiplicative persistence is 5).

Programs

  • Mathematica
    persistence[n_] := Module[{cnt = 0, k = n}, While[k > 9, cnt++; k = Times @@ IntegerDigits[k]]; cnt]; Select[Range[4000], !PrimeQ[#] && persistence[#] == 5 &] (* T. D. Noe, Nov 23 2011 *)
    mp5Q[n_]:=CompositeQ[n]&&Length[NestWhileList[ Times@@IntegerDigits[ #]&,n,#>9&]] == 6; Select[Range[4000],mp5Q] (* Harvey P. Dale, Apr 23 2022 *)
Showing 1-4 of 4 results.