cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014143 Partial sums of A014138.

Original entry on oeis.org

1, 4, 12, 34, 98, 294, 919, 2974, 9891, 33604, 116103, 406614, 1440025, 5147876, 18550572, 67310938, 245716094, 901759950, 3325066996, 12312494462, 45766188948, 170702447074, 638698318850, 2396598337950
Offset: 0

Views

Author

Keywords

Comments

Self-convolution of A014137. Column in triangle A200965. - Philippe Deléham, Jan 24 2014
For n >= 2, a(n-2) is the number of 021-avoiding ascent sequences of length n with exactly one occurrence of the consecutive pattern 01. For example, with n=3, a(1)=4 counts 001, 010, 011, 012. - David Callan, Nov 13 2019

References

  • Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[(1-2*x-Sqrt[1-4*x])/(2*x^2*(1-x)^2),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 07 2012 *)
    Table[2*Sum[Sum[Binomial[2*j+1,j]/(j+2),{j,0,k}],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 27 2012 *)
  • PARI
    x='x+O('x^66); Vec((1-2*x-sqrt(1-4*x))/(2*x^2*(1-x)^2)) \\ Joerg Arndt, May 04 2013

Formula

G.f.: (1-2*z-sqrt(1-4*z))/(2*z^2*(1-z)^2). - Emeric Deutsch, Jan 27 2003
Recurrence: (n+2)*a(n) = 6*(n+1)*a(n-1) - 3*(3*n+2)*a(n-2) + 2*(2*n+1)*a(n-3). - Vaclav Kotesovec, Oct 07 2012
a(n) ~ 2^(2n+6)/(9*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 07 2012
a(n) = 2 * Sum_{k=0..n} Sum_{j=0..k} C(2*j+1,j)/(j+2). - Vaclav Kotesovec, Oct 27 2012