cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014167 Partial sums of binary rooted tree numbers.

Original entry on oeis.org

1, 2, 4, 7, 12, 21, 37, 65, 115, 204, 363, 648, 1158, 2072, 3711, 6649, 11918, 21369, 38321, 68731, 123286, 221157, 396743, 711759, 1276927, 2290903, 4110101, 7373976, 13229809, 23735984, 42585539, 76404333, 137080119, 245941267, 441254017, 791673611
Offset: 1

Views

Author

Keywords

Examples

			G.f. = x + 2*x^2 + 4*x^3 + 7*x^4 + 12*x^5 + 21*x^6 + 37*x^7 + 65*x^8 + 115*x^9 + ...
		

Crossrefs

Cf. A002572.

Programs

  • Maple
    v:= proc(c,d) option remember; if d<0 or c<0 then 0 elif d=c then 1 else add(v(i,d-c), i=1..2*c) fi end: a:= proc(n) option remember; if n=0 then 0 else a(n-1) +v(1,n) fi end: seq(a(n), n=1..40); # Alois P. Heinz, Aug 22 2008
  • Mathematica
    v[c_, d_] := v[c, d] = If[d<0 || c<0, 0, If[d == c, 1, Sum[v[i, d-c], {i, 1, 2c}]]]; a[n_] := a[n] = If[n == 0, 0, a[n-1]+v[1, n]]; Table[a[n], {n, 1, 29}] (* Jean-François Alcover, Mar 03 2014, after Alois P. Heinz *)

Formula

G.f.: (B(x)-x)/(x(1-x)) where B(x) is g.f. of A002572.