A014167 Partial sums of binary rooted tree numbers.
1, 2, 4, 7, 12, 21, 37, 65, 115, 204, 363, 648, 1158, 2072, 3711, 6649, 11918, 21369, 38321, 68731, 123286, 221157, 396743, 711759, 1276927, 2290903, 4110101, 7373976, 13229809, 23735984, 42585539, 76404333, 137080119, 245941267, 441254017, 791673611
Offset: 1
Keywords
Examples
G.f. = x + 2*x^2 + 4*x^3 + 7*x^4 + 12*x^5 + 21*x^6 + 37*x^7 + 65*x^8 + 115*x^9 + ...
Links
Crossrefs
Cf. A002572.
Programs
-
Maple
v:= proc(c,d) option remember; if d<0 or c<0 then 0 elif d=c then 1 else add(v(i,d-c), i=1..2*c) fi end: a:= proc(n) option remember; if n=0 then 0 else a(n-1) +v(1,n) fi end: seq(a(n), n=1..40); # Alois P. Heinz, Aug 22 2008
-
Mathematica
v[c_, d_] := v[c, d] = If[d<0 || c<0, 0, If[d == c, 1, Sum[v[i, d-c], {i, 1, 2c}]]]; a[n_] := a[n] = If[n == 0, 0, a[n-1]+v[1, n]]; Table[a[n], {n, 1, 29}] (* Jean-François Alcover, Mar 03 2014, after Alois P. Heinz *)
Formula
G.f.: (B(x)-x)/(x(1-x)) where B(x) is g.f. of A002572.