A014198 Number of integer solutions to x^2 + y^2 <= n excluding (0,0).
0, 4, 8, 8, 12, 20, 20, 20, 24, 28, 36, 36, 36, 44, 44, 44, 48, 56, 60, 60, 68, 68, 68, 68, 68, 80, 88, 88, 88, 96, 96, 96, 100, 100, 108, 108, 112, 120, 120, 120, 128, 136, 136, 136, 136, 144, 144, 144, 144, 148, 160, 160, 168, 176, 176, 176, 176, 176, 184, 184
Offset: 0
Examples
For n=2 the 8 solutions are (x,y) = (+-1,0), (0,+-1), (+-1,+-1).
References
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 339
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Sum of Squares Function
Programs
-
Maple
A014198 := proc(n) nops([ numtheory[thue]( abs( x^2+y^2) <= n, [ x, y ] ) ]); end proc: seq(A014198(n),n=0..60) ;
-
Mathematica
Prepend[SquaresR[2,#] &/@Range[59],0]//Accumulate (* Ant King, Mar 12 2013 *)
-
PARI
a(n)=local(j); j=sqrtint(n); sum(x=-j,j,sum(y=-j,j,x^2+y^2<=n))-1
-
Python
from math import prod from itertools import count, accumulate, islice from sympy import factorint def A014198_gen(): # generator of terms return accumulate(map(lambda n:prod(e+1 if p & 3 == 1 else (e+1) & 1 for p, e in factorint(n).items() if p > 2) << 2, count(1)),initial=0) A014198_list = list(islice(A014198_gen(),30)) # Chai Wah Wu, Jun 28 2022
Comments