cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014198 Number of integer solutions to x^2 + y^2 <= n excluding (0,0).

Original entry on oeis.org

0, 4, 8, 8, 12, 20, 20, 20, 24, 28, 36, 36, 36, 44, 44, 44, 48, 56, 60, 60, 68, 68, 68, 68, 68, 80, 88, 88, 88, 96, 96, 96, 100, 100, 108, 108, 112, 120, 120, 120, 128, 136, 136, 136, 136, 144, 144, 144, 144, 148, 160, 160, 168, 176, 176, 176, 176, 176, 184, 184
Offset: 0

Views

Author

Keywords

Comments

a(32)/32 = 100/32 = 3.125; lim_{n->infinity} a(n)/n = Pi.
The terms of this sequence are four times the running total of the excess of the 4k + 1 divisors of the natural numbers (from 1 through to n) over their 4k + 3 divisors. - Ant King, Mar 12 2013

Examples

			For n=2 the 8 solutions are (x,y) = (+-1,0), (0,+-1), (+-1,+-1).
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 339

Crossrefs

Programs

  • Maple
    A014198 := proc(n)
        nops([ numtheory[thue]( abs( x^2+y^2) <= n, [ x, y ] ) ]);
    end proc:
    seq(A014198(n),n=0..60) ;
  • Mathematica
    Prepend[SquaresR[2,#] &/@Range[59],0]//Accumulate (* Ant King, Mar 12 2013 *)
  • PARI
    a(n)=local(j); j=sqrtint(n); sum(x=-j,j,sum(y=-j,j,x^2+y^2<=n))-1
    
  • Python
    from math import prod
    from itertools import count, accumulate, islice
    from sympy import factorint
    def A014198_gen(): # generator of terms
        return accumulate(map(lambda n:prod(e+1 if p & 3 == 1 else (e+1) & 1 for p, e in factorint(n).items() if p > 2) << 2, count(1)),initial=0)
    A014198_list = list(islice(A014198_gen(),30)) # Chai Wah Wu, Jun 28 2022

Formula

a(n) = 4*A014200(n).
a(n) = A057655(n)-1.