A014336 Three-fold exponential convolution of Fibonacci numbers with themselves.
0, 0, 0, 6, 36, 210, 1080, 5460, 26964, 132294, 645480, 3142590, 15277680, 74222616, 360445176, 1750067430, 8496115740, 41243946330, 200209950504, 971859585804, 4717557894060, 22899644483430, 111157568501760
Offset: 0
Links
- Nathaniel Johnston, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (6,-1,-24,9).
Crossrefs
Cf. A000045.
Programs
-
Magma
[(1/5)*(3^n*Fibonacci(n) - 3*Fibonacci(2*n)): n in [0..30]]; // Vincenzo Librandi, Apr 18 2011
-
Maple
with(combinat):A014336:=proc(n)return (1/5)*(3^n*fibonacci(n)-3*fibonacci(2*n)):end: seq(A014336(n), n=0..22); # Nathaniel Johnston, Apr 18 2011
Formula
(1/5)(3^n*Fibonacci(n) - 3*Fibonacci(2n)). - Ralf Stephan, May 14 2004
From R. J. Mathar, Jun 10 2013: (Start)
G.f.: -6*x^3 / ( (x^2-3*x+1)*(9*x^2+3*x-1) ).
a(n) = 6*A014337(n). (End)