A014348 Three-fold exponential convolution of primes with themselves (divided by 2).
4, 18, 84, 393, 1830, 8433, 38376, 171957, 757362, 3271533, 13849980, 57396693, 233039058, 927277245, 3624209748, 13934877933, 52843565490, 197989340133, 734212702164, 2698456656933, 9837838481154, 35609804891973, 128026118332596, 457386991178451
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A014347.
Programs
-
Maple
b:= proc(n, k) option remember; `if`(k=1, ithprime(n+1), add( b(j, floor(k/2))*b(n-j, ceil(k/2))*binomial(n, j), j=0..n)) end: a:= n-> b(n, 3)/2: seq(a(n), n=0..30); # Alois P. Heinz, Jun 07 2018
-
Mathematica
b[n_, k_] := b[n, k] = If[k==1, Prime[n+1], Sum[b[j, Floor[k/2]] b[n-j, Ceiling[k/2]] Binomial[n, j], {j, 0, n}]]; a[n_] := b[n, 3]/2; a /@ Range[0, 30] (* Jean-François Alcover, Nov 16 2020, after Alois P. Heinz *)