A014351 Four-fold exponential convolution of primes with themselves (divided by 8).
2, 12, 74, 460, 2861, 17722, 109037, 665020, 4014521, 23954342, 141123193, 820074040, 4697137637, 26504081542, 147300078809, 806343223508, 4349380581953, 23130233881414, 121379963732665, 629130600591920, 3224186845616653, 16354295398317790, 82187373706636505
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A014352.
Programs
-
Maple
b:= proc(n, k) option remember; `if`(k=1, ithprime(n+1), add( b(j, floor(k/2))*b(n-j, ceil(k/2))*binomial(n, j), j=0..n)) end: a:= n-> b(n, 4)/8: seq(a(n), n=0..30); # Alois P. Heinz, Jun 07 2018
-
Mathematica
b[n_, k_] := b[n, k] = If[k==1, Prime[n+1], Sum[b[j, Floor[k/2]] b[n-j, Ceiling[k/2]] Binomial[n, j], {j, 0, n}]]; a[n_] := b[n, 4]/8; a /@ Range[0, 30] (* Jean-François Alcover, Nov 16 2020, after Alois P. Heinz *)