cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014433 a(n) = Sum_{i=0..n-1} a(i)*a(n-i), with a(0) = 1 and a(1) = 4.

Original entry on oeis.org

1, 4, 4, 20, 52, 228, 804, 3444, 13780, 59588, 253252, 1113556, 4892276, 21860260, 98055780, 444148020, 2021194260, 9257373060, 42583930500, 196811777940, 913015265460, 4251135572580, 19856669967780, 93027410579700, 436999575464532, 2057978301836868, 9713953354107844
Offset: 0

Views

Author

Keywords

Programs

  • Maple
    a := n -> `if`(n=0,1,simplify(2^(n+1)*GegenbauerC(n-1,-n,-1/4)/n)):
    seq(a(n), n=0..26); # Peter Luschny, May 08 2016
  • Mathematica
    Table[SeriesCoefficient[(1+x-Sqrt[1-2*x-15*x^2])/(2*x),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 07 2012 *)
    nxt[{n_,a_,b_}]:={n+1,b,(b(2n+1)+15a(n-1))/(n+2)}; NestList[nxt,{1,1,4},30][[All,2]] (* Harvey P. Dale, Jul 07 2019 *)
  • PARI
    x='x+O('x^66); Vec((1+x-sqrt(1-2*x-15*x^2))/(2*x)) \\ Joerg Arndt, May 04 2013

Formula

G.f.: (1+x-sqrt(1-2*x-15*x^2))/(2*x) - C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 19 2004
a(n) = (-3)^n*(hypergeom([1/2, n+1],[1],8/5)-5*hypergeom([1/2, n],[1],8/5))*(-15)^(1/2)/(10*(n+1)) for n>0. - Mark van Hoeij, Jul 02 2010
Recurrence: (n+1)*a(n) = (2*n-1)*a(n-1) + 15*(n-2)*a(n-2). - Vaclav Kotesovec, Oct 07 2012
a(n) ~ 5^(n+1/2)/(sqrt(2*Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 07 2012
a(n) = (-2)^(n+1)*C(2*n,n-1)*hypergeom([-n-1,-n+1],[-n+1/2],5/8)/n for n>=1. - Peter Luschny, May 08 2016
a(n) = 2^(n+1)*GegenbauerC(n-1,-n,-1/4)/n for n>=1. - Peter Luschny, May 08 2016
G.f.: 1 + 4*x/G(x) with G(x) = (1 - x - 4*x^2/G(x)) (continued fraction). - Nikolaos Pantelidis, Jan 09 2023