cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A213618 Expansion of phi(-q^3) * b(q^8) in powers of q where phi() is a Ramanujan theta function and b() is a cubic AGM theta function.

Original entry on oeis.org

1, 0, 0, -2, 0, 0, 0, 0, -3, 0, 0, 6, 2, 0, 0, 0, 0, 0, 0, 0, -6, 0, 0, 0, 6, 0, 0, -14, 0, 0, 0, 0, -3, 0, 0, 12, 12, 0, 0, 0, 0, 0, 0, 0, -6, 0, 0, 0, 2, 0, 0, -12, 0, 0, 0, 0, -12, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 0, -12, 0, 0, 0, 18, 0, 0, -14, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Jun 16 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 - 2*q^3 - 3*q^8 + 6*q^11 + 2*q^12 - 6*q^20 + 6*q^24 - 14*q^27 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q^3] QPochhammer[ q^8]^3 / QPochhammer[ q^24], {q, 0, n}]; (* Michael Somos, Aug 26 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^2 * eta(x^8 + A)^3 / (eta(x^6 + A) * eta(x^24 + A)), n))};

Formula

Expansion of eta(q^3)^2 * eta(q^8)^3 / (eta(q^6) * eta(q^24)) in powers of q.
Euler transform of period 24 sequence [ 0, 0, -2, 0, 0, -1, 0, -3, -2, 0, 0, -1, 0, 0, -2, -3, 0, -1, 0, 0, -2, 0, 0, -3, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = 93312^(1/2) (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A213607.
a(3*n + 1) = a(4*n + 1) = a(4*n + 2) = a(24*n + 15) = a(24*n + 23) = 0.
a(12*n) = A014452(n). a(24*n + 8) = -3 * A213592(n). a(24*n + 11) = 6 * A213617(n). a(24*n + 20) = -6 * A213607(n).

A257653 Expansion of f(-x^2)^3 * phi(x^3) / f(-x^6) in powers of x where phi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 0, -3, 2, 0, -6, 6, 0, -3, 12, 0, -6, 2, 0, -12, 0, 0, -12, 18, 0, -6, 12, 0, 0, 6, 0, -18, 14, 0, -18, 12, 0, -3, 12, 0, -12, 12, 0, -18, 0, 0, -24, 12, 0, -6, 36, 0, 0, 2, 0, -21, 12, 0, -18, 42, 0, -12, 12, 0, -18, 0, 0, -24, 0, 0, -24, 24, 0, -12, 24, 0
Offset: 0

Views

Author

Michael Somos, Jul 25 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 3*x^2 + 2*x^3 - 6*x^5 + 6*x^6 - 3*x^8 + 12*x^9 - 6*x^11 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(36), 3/2), 71); A[1] - 3*A[3] + 2*A[4] + 6*A[6];
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^2]^3 EllipticTheta[ 3, 0, x^3] / QPochhammer[ x^6], {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^6 + A)^4 / (eta(x^3 + A)^2 * eta(x^12 + A)^2), n))};
    

Formula

Expansion of eta(q^2)^3 * eta(q^6)^4 / (eta(q^3)^2 * eta(q^12)^2) in powers of q.
Euler transform of period 12 sequence [ 0, -3, 2, -3, 0, -5, 0, -3, 2, -3, 0, -3, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 18^(3/2) (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A257651.
G.f.: Product_{k>0} (1 - x^(2*k))^3 * (1 + x^(3*k))^2 / (1 + x^(6*k))^2.
a(3*n) = A014452(n). a(3*n + 1) = 0. a(3*n + 2) = -3 * A257651(n).
Showing 1-2 of 2 results.