cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014755 3 and -3 are both 4th powers (one implies other) mod these primes p=1 mod 8.

Original entry on oeis.org

193, 313, 433, 577, 601, 673, 769, 937, 1201, 1297, 1321, 1657, 1801, 1993, 2137, 2473, 2521, 2593, 2833, 2953, 3169, 3529, 3673, 3697, 3769, 3889, 4057, 4129, 4153, 4297, 4441, 4513, 4561, 4801, 4969, 5113, 5209, 5233, 5281, 5449, 5521
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A007519.

Programs

  • Maple
    filter:= proc(p) isprime(p) and [msolve(x^4=3, p)] <> [] end proc:
    select(filter, [seq(i,i=1..10^4, 8)]); # Robert Israel, May 07 2019
  • Mathematica
    okQ[p_] := PrimeQ[p] && Solve[x^4 == 3, x, Modulus -> p] != {};
    Select[Range[1, 10000, 8], okQ] (* Jean-François Alcover, Feb 08 2023 *)
  • PARI
    forprime(p=1,9999,p%8==1&&ispower(Mod(3,p),4)&&print1(p",")) \\ M. F. Hasler, Feb 18 2014
    
  • PARI
    is_A014755(p)={p%8==1&&ispower(Mod(3,p),4)&&isprime(p)} \\ M. F. Hasler, Feb 18 2014
    
  • Python
    from itertools import count, islice
    from sympy import nextprime, is_nthpow_residue
    def A014755_gen(startvalue=2): # generator of terms >= startvalue
        p = max(nextprime(startvalue-1),2)
        while True:
            if p&7==1 and is_nthpow_residue(3,4,p) and is_nthpow_residue(-3,4,p):
                yield p
            p = nextprime(p)
    A014755_list = list(islice(A014755_gen(),20)) # Chai Wah Wu, May 02 2024

Extensions

Offset changed from 0 to 1 by Bruno Berselli, Feb 20 2014