A014755 3 and -3 are both 4th powers (one implies other) mod these primes p=1 mod 8.
193, 313, 433, 577, 601, 673, 769, 937, 1201, 1297, 1321, 1657, 1801, 1993, 2137, 2473, 2521, 2593, 2833, 2953, 3169, 3529, 3673, 3697, 3769, 3889, 4057, 4129, 4153, 4297, 4441, 4513, 4561, 4801, 4969, 5113, 5209, 5233, 5281, 5449, 5521
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A007519.
Programs
-
Maple
filter:= proc(p) isprime(p) and [msolve(x^4=3, p)] <> [] end proc: select(filter, [seq(i,i=1..10^4, 8)]); # Robert Israel, May 07 2019
-
Mathematica
okQ[p_] := PrimeQ[p] && Solve[x^4 == 3, x, Modulus -> p] != {}; Select[Range[1, 10000, 8], okQ] (* Jean-François Alcover, Feb 08 2023 *)
-
PARI
forprime(p=1,9999,p%8==1&&ispower(Mod(3,p),4)&&print1(p",")) \\ M. F. Hasler, Feb 18 2014
-
PARI
is_A014755(p)={p%8==1&&ispower(Mod(3,p),4)&&isprime(p)} \\ M. F. Hasler, Feb 18 2014
-
Python
from itertools import count, islice from sympy import nextprime, is_nthpow_residue def A014755_gen(startvalue=2): # generator of terms >= startvalue p = max(nextprime(startvalue-1),2) while True: if p&7==1 and is_nthpow_residue(3,4,p) and is_nthpow_residue(-3,4,p): yield p p = nextprime(p) A014755_list = list(islice(A014755_gen(),20)) # Chai Wah Wu, May 02 2024
Extensions
Offset changed from 0 to 1 by Bruno Berselli, Feb 20 2014