A014885 n is equal to the number of 1's in all numbers <= n written in base 8.
1, 8177, 8178, 8179, 8180, 8181, 8182, 8183, 8184, 8192, 8193, 49137, 49138, 49139, 49140, 49141, 49142, 49143, 49144, 90112, 90113, 322096, 1048576, 1048577, 1056753, 1056754, 1056755, 1056756, 1056757, 1056758, 1056759, 1056760, 1056768, 1056769, 1097713, 1097714, 1097715, 1097716, 1097717, 1097718, 1097719, 1097720, 1138688, 1138689, 2396744
Offset: 1
Crossrefs
Cf. A014778.
Programs
-
Maple
T:= 0: R:= NULL: for n from 1 to (8^8-1)/(8-1) do T:= T + numboccur(1,convert(n,base,8)); if T = n then R:= R, n; count:= count+1; fi od: R; # Robert Israel, Dec 01 2020
-
Mathematica
Module[{nn=106*10^4,n1s},n1s=Accumulate[Table[DigitCount[n,8,1],{n,nn}]];Position[Thread[{n1s,Range[nn]}],?(#[[1]]==#[[2]]&),1,Heads-> False]]// Flatten (* _Harvey P. Dale, Feb 28 2020 *)