A014905 a(1)=1, a(n) = 21*a(n-1) + n.
1, 23, 486, 10210, 214415, 4502721, 94557148, 1985700116, 41699702445, 875693751355, 18389568778466, 386180944347798, 8109799831303771, 170305796457379205, 3576421725604963320, 75104856237704229736, 1577201980991788824473, 33121241600827565313951, 695546073617378871592990
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Index entries for linear recurrences with constant coefficients, signature (23,-43,21).
Crossrefs
Row n=21 of A126885.
Programs
-
Magma
I:=[1, 23, 486]; [n le 3 select I[n] else 23*Self(n-1) - 43*Self(n-2)+ 21*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Oct 19 2012
-
Mathematica
LinearRecurrence[{23, -43, 21}, {1, 23, 486}, 20] (* Vincenzo Librandi, Oct 19 2012 *)
Formula
a(1)=1, a(2)=23, a(3)=486, a(n) = 23*a(n-1) - 43*a(n-2) + 21*a(n-3). - Vincenzo Librandi, Oct 19 2012
From Elmo R. Oliveira, Mar 29 2025: (Start)
G.f.: x/((1-21*x)*(x-1)^2).
E.g.f.: exp(x)*(21*exp(20*x) - 20*x - 21)/400.
a(n) = (21^(n+1) - 20*n - 21)/400. (End)