A014907 a(1)=1, a(n) = 22*a(n-1) + n.
1, 24, 531, 11686, 257097, 5656140, 124435087, 2737571922, 60226582293, 1324984810456, 29149665830043, 641292648260958, 14108438261741089, 310385641758303972, 6828484118682687399, 150226650611019122794, 3304986313442420701485, 72709698895733255432688, 1599613375706131619519155
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Index entries for linear recurrences with constant coefficients, signature (24,-45,22).
Crossrefs
Row n=22 of A126885.
Programs
-
Magma
I:=[1, 24, 531]; [n le 3 select I[n] else 24*Self(n-1) - 45*Self(n-2) + 22*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Oct 19 2012
-
Mathematica
LinearRecurrence[{24, -45, 22}, {1, 24, 531}, 20] (* Vincenzo Librandi, Oct 19 2012 *)
-
Maxima
a[1]:1$ a[2]:24$ a[3]:531$ a[n]:=24*a[n-1]-45*a[n-2]+22*a[n-3]$ A014907(n):=a[n]$ makelist(A014907(n),n,1,30); /* Martin Ettl, Nov 06 2012 */
Formula
a(1)=1, a(2)=24, a(3)=531, a(n) = 24*a(n-1) - 45*a(n-2) + 22*a(n-3). - Vincenzo Librandi, Oct 19 2012
From Elmo R. Oliveira, Mar 29 2025: (Start)
G.f.: x/((1-22*x)*(x-1)^2).
E.g.f.: exp(x)*(22*exp(21*x) - 21*x - 22)/441.
a(n) = (22^(n+1) - 21*n - 22)/441. (End)