cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015050 Let m = A013929(n); then a(n) = smallest k such that m divides k^3.

Original entry on oeis.org

2, 2, 3, 6, 4, 6, 10, 6, 5, 3, 14, 4, 6, 10, 22, 15, 12, 7, 10, 26, 6, 14, 30, 21, 4, 34, 6, 15, 38, 20, 9, 42, 22, 30, 46, 12, 14, 33, 10, 26, 6, 28, 58, 39, 30, 11, 62, 5, 42, 8, 66, 15, 34, 70, 12, 21, 74, 30, 38, 51, 78, 20, 18, 82, 42, 13, 57, 86
Offset: 1

Views

Author

R. Muller

Keywords

Crossrefs

Programs

  • Maple
    isA013929 := proc(n)
        not numtheory[issqrfree](n) ;
    end proc:
    A013929 := proc(n)
        option remember;
        local a;
        if n = 1 then
            4;
        else
            for a from procname(n-1)+1 do
                if isA013929(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    A015050 := proc(n)
        local m ;
        m := A013929(n) ;
        for k from 1 do
            if modp(k^3,m) = 0 then
                return k;
            end if;
        end do:
    end proc:
  • Mathematica
    f[p_, e_] := p^Ceiling[e/3]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; s /@ Select[Range[200], !SquareFreeQ[#] &] (* Amiram Eldar, Feb 09 2021 *)
  • PARI
    lista(kmax) = {my(f); for(k = 2, kmax, f = factor(k); if(!issquarefree(f), print1(prod(i = 1, #f~, f[i,1]^ceil(f[i,2]/3)), ", ")));} \\ Amiram Eldar, Jan 06 2024

Formula

a(n) = A019555(A013929(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(2) * (zeta(2) * zeta(5) * Product_{p prime} (1-1/p^2+1/p^3-1/p^4) - 1)/(zeta(2)-1)^2 = 0.6611256641303... . - Amiram Eldar, Jan 06 2024

Extensions

Description corrected by Diego Torres (torresvillarroel(AT)hotmail.com), Jun 23 2002